清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Unsupervised Underwater Image Enhancement Based on Disentangled Representations via Double-Order Contrastive Loss

计算机科学 水下 一般化 人工智能 失真(音乐) 对比度(视觉) 约束(计算机辅助设计) 图像(数学) 模式识别(心理学) 合成数据 机器学习 数学 数学分析 放大器 计算机网络 海洋学 几何学 带宽(计算) 地质学
作者
Jiankai Yin,Yan Wang,Bowen Guan,Xianchao Zeng,Lei Guo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:14
标识
DOI:10.1109/tgrs.2024.3353371
摘要

Images captured in underwater environments often suffer from color distortion, low contrast, and reduced visual quality. Most existing methods solve underwater image enhancement (UIE) by applying supervised training on synthetic images or pseudo references. However, the synthetic paired data fail to accurately replicate real-world data due to the inherent differences, and the quantity and quality of pseudo references are limited, which seriously reduces the generalization ability and performance of the model when testing on real underwater images. In contrast, unsupervised-based method is not constrained by paired data, which is more robust and potentially more promising for practical applications. Nevertheless, existing unsupervised-based methods cannot effectively constrain the network to train a model that can adapt to various degradation. Inspired by the fact that people often resolve problems from opposing but complementary perspectives, we maintain that there is implicit cooperation between the removal and generation of water layers, as they can constrain and promote each other at the same time. Based on the above analysis, a new unsupervised-based UIE framework that jointly learns water layer generation and removal based on disentangled representations is proposed. Specifically, we propose a bidirectional disentangling network in which each unidirectional network contains a loop consisting of water layer removal and generation, and restricts the image to remain consistent after a loop. Meanwhile, a novel double-order contrastive loss is proposed to improve the ability of disentanglement by utilizing the joint implicit constraint of first-order features and second-order features. Extensive experimental results demonstrate that the model outperforms the state-of-the-art methods in both qualitative and quantitative evaluation with a relatively high processing speed. The experimental results of the ablation study demonstrate the usefulness of the various components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wood完成签到,获得积分10
4秒前
CadoreK完成签到 ,获得积分10
4秒前
管靖易完成签到 ,获得积分10
29秒前
阿里完成签到,获得积分10
42秒前
冷傲的擎汉完成签到 ,获得积分10
55秒前
wang5945完成签到 ,获得积分10
57秒前
uppercrusteve完成签到,获得积分10
58秒前
青雾雨完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
炳灿完成签到 ,获得积分10
1分钟前
DHW1703701完成签到,获得积分10
1分钟前
荔枝励志完成签到 ,获得积分10
1分钟前
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
闲人颦儿完成签到,获得积分0
1分钟前
ceeray23发布了新的文献求助20
2分钟前
wujiwuhui完成签到 ,获得积分10
2分钟前
飞云完成签到 ,获得积分10
2分钟前
眯眯眼的安雁完成签到 ,获得积分10
2分钟前
似水流年完成签到 ,获得积分10
2分钟前
hzauhzau完成签到 ,获得积分10
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
william完成签到,获得积分10
4分钟前
红茸茸羊完成签到 ,获得积分10
4分钟前
休斯顿完成签到,获得积分10
4分钟前
friend516完成签到 ,获得积分10
4分钟前
氕氘氚完成签到 ,获得积分10
4分钟前
tiantian完成签到 ,获得积分10
5分钟前
千空完成签到 ,获得积分10
5分钟前
黑猫老师完成签到 ,获得积分10
5分钟前
彩色的芷容完成签到 ,获得积分10
5分钟前
5分钟前
ceeray23发布了新的文献求助20
5分钟前
JamesPei应助waxxi采纳,获得10
5分钟前
长毛象完成签到 ,获得积分10
5分钟前
香蕉觅云应助科研通管家采纳,获得10
5分钟前
ywzwszl完成签到,获得积分0
6分钟前
zzgpku完成签到,获得积分0
6分钟前
量子星尘发布了新的文献求助10
7分钟前
科研通AI6应助FXe采纳,获得10
7分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771600
捐赠科研通 4614846
什么是DOI,文献DOI怎么找? 2530239
邀请新用户注册赠送积分活动 1499103
关于科研通互助平台的介绍 1467551