Simple and Efficient Heterogeneous Graph Neural Network

计算机科学 新闻聚合器 图形 理论计算机科学 人工神经网络 人工智能 操作系统
作者
Xiaocheng Yang,Mingyu Yan,Shirui Pan,Xiaochun Ye,Dongrui Fan
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (9): 10816-10824 被引量:78
标识
DOI:10.1609/aaai.v37i9.26283
摘要

Heterogeneous graph neural networks (HGNNs) have the powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations. Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) designed for homogeneous graphs, especially the attention mechanism and the multi-layer structure. These mechanisms bring excessive complexity, but seldom work studies whether they are really effective on heterogeneous graphs. In this paper, we conduct an in-depth and detailed study of these mechanisms and propose the Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN). To easily capture structural information, SeHGNN pre-computes the neighbor aggregation using a light-weight mean aggregator, which reduces complexity by removing overused neighbor attention and avoiding repeated neighbor aggregation in every training epoch. To better utilize semantic information, SeHGNN adopts the single-layer structure with long metapaths to extend the receptive field, as well as a transformer-based semantic fusion module to fuse features from different metapaths. As a result, SeHGNN exhibits the characteristics of a simple network structure, high prediction accuracy, and fast training speed. Extensive experiments on five real-world heterogeneous graphs demonstrate the superiority of SeHGNN over the state-of-the-arts on both accuracy and training speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
hh发布了新的文献求助10
1秒前
一如果一完成签到,获得积分10
1秒前
甜蜜乐松发布了新的文献求助10
2秒前
2秒前
GHL完成签到,获得积分10
2秒前
Hello应助吴龙采纳,获得10
2秒前
善学以致用应助周小鱼采纳,获得10
2秒前
余怜烟完成签到,获得积分10
3秒前
玖Nine发布了新的文献求助10
4秒前
共享精神应助芋泥采纳,获得10
5秒前
wsw发布了新的文献求助30
6秒前
6秒前
Yang发布了新的文献求助20
7秒前
鹅鹅鹅发布了新的文献求助30
7秒前
科研通AI5应助11采纳,获得10
7秒前
sakura应助炙热灵采纳,获得20
8秒前
许甜甜鸭应助炙热灵采纳,获得10
8秒前
TaoJ应助余怜烟采纳,获得10
9秒前
huff完成签到,获得积分10
9秒前
鄢浩凝完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
11秒前
踏雪飞鸿发布了新的文献求助10
11秒前
11秒前
GQ发布了新的文献求助10
12秒前
12秒前
ff完成签到 ,获得积分10
14秒前
梅竹完成签到,获得积分10
14秒前
14秒前
nicoco完成签到,获得积分10
14秒前
旧巷歌者完成签到,获得积分10
15秒前
羊笨笨完成签到 ,获得积分10
15秒前
JamesPei应助lysun采纳,获得10
15秒前
研友_LaVPdn发布了新的文献求助10
16秒前
TOMMY233发布了新的文献求助10
17秒前
18秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828462
求助须知:如何正确求助?哪些是违规求助? 3370778
关于积分的说明 10464992
捐赠科研通 3090721
什么是DOI,文献DOI怎么找? 1700503
邀请新用户注册赠送积分活动 817885
科研通“疑难数据库(出版商)”最低求助积分说明 770571