Evaluation of new sparrow search algorithms with sequential fusion of improvement strategies

算法 正弦 人口 水准点(测量) 莱维航班 三角函数 麻雀 计算机科学 数学 数学优化 统计 地理 生物 地图学 生态学 人口学 随机游动 几何学 社会学
作者
Jun Li,Jiumei Chen,Jing Shi
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:182: 109425-109425 被引量:16
标识
DOI:10.1016/j.cie.2023.109425
摘要

Sparrow search algorithm (SSA) is a novel swarm intelligent algorithm inspired by foraging and anti-predation behaviors of the sparrow population. However, the population diversity of the basic SSA decreases in iterations and it tends to fall into the local optimum. In this paper, we propose five improved sparrow search algorithms (ISSAs 1–5) by sequentially integrating the five strategies of improved sine mapping, elite opposition-based learning, sine cosine algorithm, Lévy flight, and Gaussian mutation to enhance SSA performance. In other words, the nth ISSA adopts the first n above improvement strategies. An experiment based on 23 classical benchmark functions (F1-F23) is conducted to test the performance of proposed ISSAs. Based on a comprehensive comparison with existing algorithms, it is found that ISSA 5 which fuses all five improvement strategies has the best performance, and the ISSA performance increases as more improvement strategies are integrated. For F1-F13, ISSA 5 outperforms all other algorithms for 69.23% (9/13), 76.92% (10/13), 61.54% (8/13), 76.92% (10/13), 69.23% (9/13), 61.54% (8/13) of the functions at 10, 30, 50, 100, 500, 1000 dimensions respectively. For fix-dimension functions F14-F23, ISSA 5 is top-ranked for 70.00% (7/10) of the functions. Also, it is found that the sine cosine algorithm and Lévy flight strategies have greater impact on the improvement of SSA among the five strategies. Moreover, further analysis by Friedman test and Nemenyi post-hoc test reveals the superior performance of the proposed ISSAs in a statistical sense against other competing algorithms. As such, the results indeed postively demonstrate the efficiency, robustness, convergence and practical applicability of the proposed ISSAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bull9518发布了新的文献求助10
1秒前
裴仰纳完成签到 ,获得积分10
2秒前
3秒前
moroa完成签到,获得积分10
4秒前
jun完成签到 ,获得积分10
6秒前
求知的周完成签到,获得积分10
7秒前
Cynthia发布了新的文献求助10
9秒前
嗝嗝完成签到,获得积分10
9秒前
冰留完成签到 ,获得积分10
9秒前
七仔完成签到 ,获得积分10
14秒前
泥過完成签到 ,获得积分10
16秒前
EMMA完成签到,获得积分20
18秒前
ranj完成签到,获得积分10
19秒前
橙子慢慢来完成签到,获得积分10
23秒前
笑点低的斑马完成签到,获得积分10
24秒前
Cynthia完成签到,获得积分20
25秒前
bull9518发布了新的文献求助10
29秒前
杨白秋完成签到,获得积分10
32秒前
科研狗的春天完成签到 ,获得积分10
34秒前
周小鱼完成签到,获得积分10
34秒前
MADAO完成签到 ,获得积分10
35秒前
ddd完成签到,获得积分10
37秒前
meixinhu完成签到,获得积分10
37秒前
救我完成签到,获得积分10
39秒前
41秒前
139完成签到 ,获得积分0
42秒前
简奥斯汀完成签到 ,获得积分10
44秒前
46秒前
47秒前
牧百川发布了新的文献求助10
51秒前
所所应助xuxu采纳,获得10
52秒前
DireWolf完成签到 ,获得积分10
55秒前
尔玉完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
帅气的沧海完成签到 ,获得积分10
1分钟前
1分钟前
Cu完成签到 ,获得积分10
1分钟前
ran完成签到 ,获得积分10
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800999
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329619
捐赠科研通 3063070
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726