已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Molecular Screening and Toxicity Estimation of 260,000 Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) through Machine Learning

孕烷X受体 分子描述符 计算生物学 化学 毒性 组合化学 生化工程 受体 虚拟筛选 分子动力学 计算机科学 核受体 生物化学 生物 数量结构-活动关系 计算化学 基因 有机化学 立体化学 转录因子 工程类
作者
Thanh T. Lai,David Kuntz,Angela K. Wilson
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (19): 4569-4578 被引量:26
标识
DOI:10.1021/acs.jcim.2c00374
摘要

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a class of chemicals widely used in industrial applications due to their exceptional properties and stability. However, they do not readily degrade in the environment and are linked to contamination and adverse health effects in humans and wildlife. To find alternatives for the most commonly used PFAS molecules that maintain their desirable chemical properties but are not adverse to biological lifeforms, a novel approach based upon machine learning is utilized. The machine learning model is trained on an existing set of PFAS molecules to generate over 260,000 novel PFAS molecules, which we dub PFAS-AI-Gen. Using molecular descriptors with known relationships to toxicity and industrial suitability followed by molecular docking and molecular dynamics simulations, this set of molecules is screened. In this manner, increasingly complex calculations are performed only for candidate molecules that are most likely to yield the desired properties of low binding affinity toward two selected protein receptors, the human pregnane x receptor (hPXR) and peroxisome proliferator-activated receptor γ (PPAR-γ), and high industrial suitability, defined by critical micelle concentration (CMC). The selection criteria of low binding affinity and high industrial suitability are relative to the popular PFAS alternative GenX. hPXR and PPAR-γ are selected as they are PFAS targets and facilitate a variety of functions, such as drug metabolism and glucose regulation, respectively. Through this approach, 22 promising new PFAS substitutes that may warrant experimental investigation are identified. This integrated approach of molecular screening and toxicity estimation may be applicable to other chemical classes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助Wonder罗采纳,获得10
刚刚
hjyylab应助suicone采纳,获得10
刚刚
3秒前
小马甲应助喜悦非笑采纳,获得10
3秒前
zpq发布了新的文献求助10
5秒前
5秒前
无辜的书琴完成签到,获得积分10
9秒前
领导范儿应助小菡菡采纳,获得10
12秒前
隐形曼青应助犹豫书雪采纳,获得10
12秒前
小蘑菇应助小学生库里采纳,获得10
13秒前
xuli21315完成签到 ,获得积分10
16秒前
xxxksk完成签到 ,获得积分10
16秒前
18秒前
小蘑菇应助晚风采纳,获得10
20秒前
bread完成签到,获得积分10
21秒前
蓝色天空完成签到,获得积分10
22秒前
不能说的秘密完成签到,获得积分10
22秒前
ftl发布了新的文献求助10
23秒前
三横一竖发布了新的文献求助10
24秒前
26秒前
所所应助科研通管家采纳,获得10
27秒前
SYLH应助科研通管家采纳,获得10
27秒前
爆米花应助科研通管家采纳,获得10
27秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
wanci应助科研通管家采纳,获得10
27秒前
Estrella应助科研通管家采纳,获得10
27秒前
NexusExplorer应助科研通管家采纳,获得10
28秒前
SYLH应助科研通管家采纳,获得10
28秒前
hjyylab应助suicone采纳,获得10
28秒前
29秒前
锦七完成签到,获得积分10
29秒前
32秒前
32秒前
ShengQ完成签到,获得积分10
33秒前
34秒前
善学以致用应助ftl采纳,获得10
35秒前
pluto应助Hresearch采纳,获得10
36秒前
可爱的函函应助Hresearch采纳,获得10
36秒前
38秒前
留胡子的桐完成签到 ,获得积分10
40秒前
高分求助中
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840547
求助须知:如何正确求助?哪些是违规求助? 3382618
关于积分的说明 10525193
捐赠科研通 3102191
什么是DOI,文献DOI怎么找? 1708723
邀请新用户注册赠送积分活动 822646
科研通“疑难数据库(出版商)”最低求助积分说明 773450