Classification of Histological Types of Primary Lung Cancer from CT Images Using Clinical Information

肺癌 腺癌 癌症 阶段(地层学) 医学影像学 计算机辅助设计 人工智能 计算机科学 计算机辅助诊断 医学 放射科 病理 内科学 生物 古生物学 生物化学
作者
Naoya Honda,Tohru Kamiya,Shoji Kido
标识
DOI:10.23919/iccas59377.2023.10316865
摘要

Identification of primary lung cancer is very important because it influences the course of treatment, especially for small cell carcinomas, which metastasize rapidly and must be detected at an early stage. In addition to imaging, clinical information is often used in CAD (computer aided diagnosis) systems. In addition to images, clinical information is often used in CAD systems, especially information on smoking history, which is considered to be important in the diagnosis of lung cancer. In this paper, we propose a method to identify primary lung cancer by adding clinical information from medical records in addition to images in order to improve the accuracy of diagnosis. We use tumor images surrounded by rectangular regions from CT images in an open dataset as input images and train the method by deep learning. We evaluate the proposed method by discriminating tumors from unknown data. In our experiments, we found that the accuracy was improved by about 5% when clinical information was added to 655 images, which included four classes of cancer: adenocarcinoma, small cell carcinoma, squamous cell carcinoma, and large cell carcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助科研通管家采纳,获得10
刚刚
刚刚
浮游应助科研通管家采纳,获得10
刚刚
学术人发布了新的文献求助10
刚刚
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
深情安青应助自觉平露采纳,获得30
刚刚
浮游应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
嘻嘻应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
Criminology34应助科研通管家采纳,获得10
1秒前
1秒前
好好完成签到,获得积分10
1秒前
领导范儿应助昏睡的冰双采纳,获得10
2秒前
2秒前
CatOS发布了新的文献求助10
3秒前
guohuafan发布了新的文献求助10
3秒前
学术垃圾发布了新的文献求助10
4秒前
酷炫的若剑完成签到,获得积分10
5秒前
5秒前
7秒前
bkagyin应助云朵采纳,获得10
8秒前
云山完成签到,获得积分10
9秒前
wyt1239012发布了新的文献求助10
9秒前
rita_sun1969发布了新的文献求助20
9秒前
Cyph1r完成签到,获得积分10
10秒前
11秒前
12秒前
无花果应助云山采纳,获得10
12秒前
多巴胺发布了新的文献求助10
12秒前
思源应助戳戳采纳,获得10
12秒前
学术垃圾完成签到,获得积分10
13秒前
13秒前
丘比特应助wyx采纳,获得10
13秒前
好好发布了新的文献求助30
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5184408
求助须知:如何正确求助?哪些是违规求助? 4370229
关于积分的说明 13609334
捐赠科研通 4222301
什么是DOI,文献DOI怎么找? 2315790
邀请新用户注册赠送积分活动 1314326
关于科研通互助平台的介绍 1263281