Using machine learning to predict the long-term performance of fibre-reinforced polymer structures: A state-of-the-art review

过度拟合 耐久性 稳健性(进化) 计算机科学 可预测性 机器学习 杠杆(统计) 期限(时间) 人工智能 可靠性工程 数据挖掘 数据库 工程类 数学 统计 生物化学 基因 物理 化学 人工神经网络 量子力学
作者
Chiara Machello,Milad Bazli,Ali Rajabipour,Hooman Mahdizadeh Rad,Mehrdad Arashpour,S. Ali Hadigheh
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:408: 133692-133692 被引量:35
标识
DOI:10.1016/j.conbuildmat.2023.133692
摘要

When exposed to environmental conditions, fibre-reinforced polymer (FRP) composites are prone to material degradation. The environmental reduction factor in different structural codes reflects the significant effect of the long-term durability of FRPs in aggressive environments. Traditional prediction methods rely on oversimplified premises, which may result in erroneous errors. Due to its proficiency in dealing with complex non-linear structural problems, machine learning (ML) offers a unique potential to increase the predictability of structural engineering factors. This can be attributed to the recent advancements in ML techniques, which leverage their robustness when handling large datasets, as well as the increased processing power that facilitates more efficient data analysis. This article reviews the current implementation cases and capabilities of ML algorithms in overcoming the shortcomings of conventional models for predicting the durability performance of FRP systems. According to the literature, it was found that the efficiency of ML approach varies significantly depending on the quality and comprehensiveness of the database. While various researcher-employed algorithms generally yield accurate predictions for retaining mechanical properties in FRP composites with minor errors, sensitivity analysis highlights varied impacts of variables when using different datasets or machine learning algorithms. This variance may arise from factors like inadequate or low-quality datasets, insufficient training, overfitting, and other influences. More experimental data are needed to enhance the current database to effectively apply ML in more applications for FRPs under different loading and environmental conditions. The paper ends by suggesting future research directions in this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重傲白发布了新的文献求助10
1秒前
huangchenxi完成签到 ,获得积分10
1秒前
1秒前
小丹小丹完成签到 ,获得积分10
2秒前
852应助Mei采纳,获得10
2秒前
zy发布了新的文献求助10
2秒前
科研通AI6应助wangli采纳,获得10
3秒前
3秒前
Hello应助marryhh采纳,获得10
3秒前
星辰大海应助Vic采纳,获得10
4秒前
正切发布了新的文献求助10
4秒前
杨阳驳回了Jasper应助
5秒前
6秒前
陈七发布了新的文献求助20
6秒前
6秒前
勤恳雅莉应助徐志豪采纳,获得30
7秒前
7秒前
华仔应助xsf采纳,获得10
8秒前
MaRin完成签到,获得积分20
8秒前
大模型应助稳重傲白采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
小蚊子应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
shi hui应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得80
11秒前
11秒前
打打应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
所所应助勤奋海燕采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554346
求助须知:如何正确求助?哪些是违规求助? 4638877
关于积分的说明 14654484
捐赠科研通 4580637
什么是DOI,文献DOI怎么找? 2512417
邀请新用户注册赠送积分活动 1487207
关于科研通互助平台的介绍 1458076