An intelligent approach for predicting overbreak in underground blasting operation based on an optimized XGBoost model

威尔科克森符号秩检验 统计 均方误差 支持向量机 岩石爆破 计算机科学 相关系数 数学 人工智能 地质学 采矿工程 曼惠特尼U检验
作者
Zhixian Hong,Ming Tao,Leilei Liu,Mingsheng Zhao,Chengqing Wu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107097-107097 被引量:30
标识
DOI:10.1016/j.engappai.2023.107097
摘要

The occurrence of overbreak in tunnels excavated with the drill-and-blast technique is a common phenomenon that has significant impacts on structure safety and construction costs. Accurate prediction of overbreak is crucial for optimizing the construction schedule and diminishing damages. This study proposed a data-driven method that integrated extreme gradient boosting (XGBoost) and Bayesian optimization (BO) algorithms to predict overbreak extent. Firstly, 250 overbreak samples were collected from three underground mines, and eight independent factors that may affect overbreak were identified. Subsequently, the BO–XGBoost prediction model was established, and Spearman correlation analysis and sensitivity analysis were conducted to analyze the relation between overbreak and influencing factors. Finally, the proposed BO–XGBoost model was employed to forecast the overbreak in another two underground mines. The experimental results indicated that the proposed BO–XGBoost model outperformed other models, including Random Forests (RF), Support Vector Machine (SVM), BO–RF, BO–SVM, and XGBoost models, with root mean square error (RMSE), mean absolute error (MAE), and determination coefficient (R2) values of 0.888, 0.619 and 0.935, respectively. Additionally, statistical analysis using Friedman Test (FT) and Wilcoxon Signed-Rank Test (WSRT) demonstrated the efficacy of the proposed model. The results suggested that tunnel diameter (D) was the most significant factor affecting overbreak, followed by RMR, periphery hole burden (SP) and uniaxial compressive strength (UCS). The proposed method accurately forecasted overbreak extents at different mines, with errors between the predicted and observed overbreaks of less than 6%. In summary, the proposed BO–XGBoost model can provide valuable guidance for predicting blast-induced overbreak in mining and tunneling operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任善若完成签到 ,获得积分10
1秒前
zheng发布了新的文献求助10
1秒前
2秒前
黄bb应助小豆芽儿采纳,获得10
2秒前
zzz发布了新的文献求助10
2秒前
搜集达人应助YOLO采纳,获得10
2秒前
平常雪柳发布了新的文献求助10
2秒前
3秒前
大个应助yeyeye采纳,获得10
3秒前
3秒前
3秒前
wyx发布了新的文献求助10
4秒前
5秒前
科研通AI5应助快乐听南采纳,获得10
6秒前
楼一笑发布了新的文献求助10
6秒前
六月歌者发布了新的文献求助10
7秒前
花城发布了新的文献求助10
7秒前
wennuan0913发布了新的文献求助10
7秒前
充电宝应助如意草丛采纳,获得10
8秒前
8秒前
撕裂伤口发布了新的文献求助10
8秒前
抹茶牛奶配布丁完成签到 ,获得积分10
9秒前
xxx77发布了新的文献求助10
9秒前
9秒前
Dec完成签到 ,获得积分10
9秒前
9秒前
Kane发布了新的文献求助10
9秒前
9秒前
牧瞻完成签到,获得积分10
10秒前
10秒前
LL发布了新的文献求助10
11秒前
Marcus完成签到,获得积分20
11秒前
12秒前
辛勤清炎完成签到,获得积分20
12秒前
13秒前
充电宝应助GARO采纳,获得10
13秒前
彳亍1117应助害羞向日葵采纳,获得10
13秒前
13秒前
科研通AI5应助醉熏的觅翠采纳,获得10
13秒前
dahafei完成签到,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786700
求助须知:如何正确求助?哪些是违规求助? 3332381
关于积分的说明 10255367
捐赠科研通 3047723
什么是DOI,文献DOI怎么找? 1672668
邀请新用户注册赠送积分活动 801476
科研通“疑难数据库(出版商)”最低求助积分说明 760204