Toward High‐Performance Electrochemical Energy Storage Systems: A Case Study on Predicting Electrochemical Properties and Inverse Material Design of MXene‐Based Electrode Materials with Automated Machine Learning (AutoML)

电化学储能 材料科学 电化学 储能 电极 反向 纳米技术 电化学能量转换 能量(信号处理) 工程物理 机械工程 超级电容器 工程类 热力学 物理 功率(物理) 量子力学 数学 几何学
作者
Berna Alemdag,Görkem Saygılı,Matthias Franzreb,Gözde Kabay
出处
期刊:Advanced electronic materials [Wiley]
卷期号:11 (17) 被引量:4
标识
DOI:10.1002/aelm.202400818
摘要

Abstract This study highlights the potential of Automated Machine Learning (AutoML) to improve and accelerate the optimization and synthesis processes and facilitate the discovery of materials. Using a Density Functional Theory (DFT)‐simulated dataset of monolayer MXene‐based electrodes, AutoML assesses 20 regression models to predict key electrochemical and structural properties, including intercalation voltage, theoretical capacity, and lattice parameters. The CatBoost regressor achieves R 2 values of 0.81 for intercalation voltage, 0.995 for theoretical capacity as well as 0.807 and 0.997 for intercalated and non‐intercalated in‐plane lattice constants, respectively. Feature importance analyses reveal essential structure‐property relationships, improving model interpretability. AutoML's classification module also bolsters inverse material design, effectively identifying promising compositions, such as Mg 2+ ‐intercalated and oxygen‐terminated ScC 2 MXenes, for high‐capacity and high‐voltage energy storage applications. This approach diminishes reliance on computational expertise by automating model selection, hyperparameter tuning, and performance evaluation. While MXene‐based electrodes serve as a demonstrative system, the methodology and workflow can extend to other material systems, including perovskites and conductive polymers. Future efforts should prioritize integrating AutoML with real‐time experimental feedback and hybrid simulation frameworks to create adaptive systems. These systems can iteratively refine predictions and optimize trade‐offs among critical metrics like capacity, stability, and charge/discharge rates, driving advancements in energy storage and other material applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如果完成签到,获得积分20
1秒前
Minton发布了新的文献求助10
1秒前
1秒前
1秒前
wyj发布了新的文献求助10
1秒前
领导范儿应助yxy采纳,获得10
2秒前
2秒前
王瑄瑄发布了新的文献求助10
3秒前
3秒前
kqd关闭了kqd文献求助
3秒前
d_ly发布了新的文献求助10
3秒前
一一发布了新的文献求助10
3秒前
3秒前
搜集达人应助烂漫凡柔采纳,获得10
3秒前
善学以致用应助llll采纳,获得10
4秒前
4秒前
4秒前
4秒前
otto12306发布了新的文献求助10
6秒前
6秒前
6秒前
生动的战斗机完成签到,获得积分10
6秒前
6秒前
笑点低从凝关注了科研通微信公众号
6秒前
小马甲应助偷马桶采纳,获得10
6秒前
6秒前
Albert完成签到,获得积分10
7秒前
7秒前
7秒前
科研通AI6应助谨慎海蓝采纳,获得10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
子车茗应助prophe采纳,获得30
10秒前
jimoon发布了新的文献求助10
10秒前
FashionBoy应助Eason采纳,获得10
10秒前
花花花花发布了新的文献求助10
11秒前
ding应助等待采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430202
求助须知:如何正确求助?哪些是违规求助? 4543438
关于积分的说明 14187210
捐赠科研通 4461576
什么是DOI,文献DOI怎么找? 2446244
邀请新用户注册赠送积分活动 1437490
关于科研通互助平台的介绍 1414381