Detection of tuberculosis by automatic cough sound analysis

灵敏度(控制系统) 医学 肺结核 人工智能 集合(抽象数据类型) 计算机科学 语音识别 机器学习 模式识别(心理学) 病理 电子工程 工程类 程序设计语言
作者
Gert Hendrik Renier Botha,Grant Theron,Robin M. Warren,Marisa Klopper,Keertan Dheda,Paul D. van Helden,Thomas Niesler
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:39 (4): 045005-045005 被引量:110
标识
DOI:10.1088/1361-6579/aab6d0
摘要

Globally, tuberculosis (TB) remains one of the most deadly diseases. Although several effective diagnosis methods exist, in lower income countries clinics may not be in a position to afford expensive equipment and employ the trained experts needed to interpret results. In these situations, symptoms including cough are commonly used to identify patients for testing. However, self-reported cough has suboptimal sensitivity and specificity, which may be improved by digital detection.This study investigates a simple and easily applied method for TB screening based on the automatic analysis of coughing sounds. A database of cough audio recordings was collected and used to develop statistical classifiers.These classifiers use short-term spectral information to automatically distinguish between the coughs of TB positive patients and healthy controls with an accuracy of 78% and an AUC of 0.95. When a set of five clinical measurements is available in addition to the audio, this accuracy improves to 82%. By choosing an appropriate decision threshold, the system can achieve a sensitivity of 95% at a specificity of approximately 72%. The experiments suggest that the classifiers are using some spectral information that is not perceivable by the human auditory system, and that certain frequencies are more useful for classification than others.We conclude that automatic classification of coughing sounds may represent a viable low-cost and low-complexity screening method for TB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏侯以旋完成签到,获得积分10
1秒前
seven_yao应助十二采纳,获得20
1秒前
1秒前
Akim应助罚克由尔采纳,获得10
1秒前
向往生活完成签到,获得积分10
1秒前
微笑的冰烟完成签到,获得积分10
1秒前
2秒前
Jasper应助荔枝采纳,获得10
2秒前
2秒前
可耐的紫夏完成签到,获得积分10
2秒前
huangxiaoniu完成签到,获得积分10
4秒前
简单的冬瓜完成签到,获得积分10
4秒前
快乐的元霜完成签到 ,获得积分10
4秒前
麦子完成签到 ,获得积分10
4秒前
陶子发布了新的文献求助10
5秒前
张艳梅发布了新的文献求助10
5秒前
abtitw完成签到,获得积分10
5秒前
Su完成签到,获得积分10
6秒前
Joy发布了新的文献求助30
6秒前
周小鱼发布了新的文献求助10
6秒前
飞云发布了新的文献求助10
7秒前
cdercder应助简单的冬瓜采纳,获得10
7秒前
搜集达人应助txkahy采纳,获得10
7秒前
7秒前
HEIKU应助Sandy采纳,获得10
9秒前
xiaohongmao完成签到,获得积分10
9秒前
无限草丛完成签到,获得积分10
9秒前
Solitude完成签到,获得积分10
10秒前
科研通AI5应助轻歌水越采纳,获得10
10秒前
10秒前
10秒前
10秒前
暖羊羊Y完成签到 ,获得积分10
11秒前
木木完成签到,获得积分10
12秒前
一二完成签到,获得积分10
13秒前
舒心小凡完成签到,获得积分10
14秒前
teargasxq发布了新的文献求助10
15秒前
myl完成签到,获得积分10
15秒前
QINXD完成签到,获得积分10
15秒前
蓝岳洋完成签到,获得积分20
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Handbook of Medicinal Chemistry: Principles and Practice 200
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834097
求助须知:如何正确求助?哪些是违规求助? 3376554
关于积分的说明 10493831
捐赠科研通 3096024
什么是DOI,文献DOI怎么找? 1704828
邀请新用户注册赠送积分活动 820115
科研通“疑难数据库(出版商)”最低求助积分说明 771868