Donor-acceptor covalent organic framework/ZnIn2S4 core-shell structure S-scheme heterostructure for efficient photocatalytic hydrogen evolution

材料科学 异质结 光催化 共价键 接受者 壳体(结构) 芯(光纤) 光电子学 分解水 光化学 化学工程 纳米技术 凝聚态物理 催化作用 复合材料 有机化学 化学 工程类 物理
作者
Chao Cui,Xin Xu,Xiao‐Lei Zhao,Ning Xi,Mingtao Li,Xiaoning Wang,Yuanhua Sang,Xiaowen Yu,Hong Liu,Jiahai Wang
出处
期刊:Nano Energy [Elsevier]
卷期号:126: 109632-109632 被引量:23
标识
DOI:10.1016/j.nanoen.2024.109632
摘要

Covalent organic frameworks (COFs) show promising prospect as the photocatalysts with advantages of exceptional light adsorption capabilities, large specific surface area, and adjustable band structure. However, COFs usually suffer from severe recombination of photogenerated carriers. Therefore, there is an urgent need to design effective COF-based heterostructures to enhance the separation of carriers. In this work, a porphyrin-based COF with electron donor-acceptor structure is synthesized via condensation polymerization by using 5, 10, 15, 20-tetrakis (4-aminophenyl) porphyrin (TAPPP) and N, N, N, N-tetra(4-aldehydephenyl)-1, 4-phenylenediamine as the electron donor and acceptor, respectively. Subsequently, ZnIn2S4 (ZIS) are successfully in-situ grown on the surface of porphyrin-based COF, forming a novel core-shell structure. The in-situ synthesized ZIS with positive charges can be easily adsorbed on the negatively charged sites of the COF's surface via the electrostatic interaction. This organic/inorganic hybrid COF-ZIS heterostructure exhibits a superior photocatalytic hydrogen evolution (PHE) rate of 695 μmol g−1 h−1, approximately three times higher than that of ZIS. The construction of COF-ZIS heterostructure played an important role in enhancing the separation and transport of photogenerated carriers, which provided more electrons at the surface of ZIS to take part in proton reduction. Electron paramagnetic resonance spectra confirm the charge carriers transfer mode in the COF-ZIS heterostructure via an S-scheme mechanism. Moreover, upon loading Pt as the cocatalyst, the heterostructure achieves an effective PHE rate of 2711 μmol g−1 h−1 along with an exceptional stability. Additionally, the COF-ZIS heterostructure reaches up to 2.45% of apparent quantum efficiency at 400 nm. Notably, the average lifetime of the COF-ZIS heterostructure increases by 43.2% and 98.9% compared to that of ZIS and COF individually, as observed through single-particle fluorescence spectroscopy. This work gives valuable inspiration into the building of donor-acceptor COF-based S-scheme heterostructures to achieve highly effective green energy conversion by aligning band structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助77采纳,获得10
1秒前
Kyrie发布了新的文献求助10
2秒前
恬恬完成签到,获得积分10
2秒前
欣慰的文龙完成签到,获得积分10
2秒前
gaigai发布了新的文献求助10
2秒前
Anna完成签到,获得积分10
3秒前
3秒前
orixero应助幽凡采纳,获得10
3秒前
yangsi完成签到 ,获得积分10
3秒前
Zhou发布了新的文献求助10
3秒前
虞头星星发布了新的文献求助10
3秒前
爱吃香菜完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
可靠板栗发布了新的文献求助10
5秒前
eric888应助科研通管家采纳,获得30
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
Wang完成签到,获得积分10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
TigerOvO应助晋姝采纳,获得30
5秒前
shenya0810应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
方法应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
shenya0810应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524179
求助须知:如何正确求助?哪些是违规求助? 4614787
关于积分的说明 14544532
捐赠科研通 4552587
什么是DOI,文献DOI怎么找? 2494902
邀请新用户注册赠送积分活动 1475610
关于科研通互助平台的介绍 1447321