Training future engineers: Integrating Computational Thinking and effective learning methodologies into education

计算思维 培训(气象学) 计算机科学 管理科学 数学教育 人工智能 工程类 心理学 物理 气象学
作者
Rafael Herrero‐Álvarez,Coromoto León,Gara Miranda,Eduardo Segredo
出处
期刊:Computer Applications in Engineering Education [Wiley]
标识
DOI:10.1002/cae.22723
摘要

Abstract This article examines the effectiveness and interest generated among primary and secondary education students through activities aimed at developing Computational Thinking skills, in the context of the coronavirus disease 2019 pandemic. The shift to online or hybrid learning models posed a significant challenge for educators, particularly those lacking digital skills. The study sought to answer several research questions, including the impact of online versus in‐person teaching on preuniversity students and gender differences in Computer Science perception, and Computational Thinking skills performance. The study employed a four‐phase methodology, consisting of pre‐ and posttraining measurements of Computer Science perception and Computational Thinking skills development through specific activities delivered in‐person or online. The results indicate that in‐person training is more effective for developing Computational Thinking skills, particularly at the secondary education level. Furthermore, there is a need to focus on maintaining girls' interest in Computer Science during primary school, as interest levels tend to decline significantly in secondary school. These findings have significant implications for Engineering Education in the context of digital transformation and the increasing importance of Computational Thinking skills in various fields of engineering. This study highlights the importance of developing Computational Thinking skills among preuniversity students and the need for effective training methods to achieve this goal and underscore the significance of investing in Engineering Education to prepare the next generation of engineers for the rapidly changing digital landscape.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
譬如朝露发布了新的文献求助10
刚刚
1秒前
FelixChen应助YH采纳,获得10
2秒前
wanci应助会撒娇的紫雪采纳,获得30
2秒前
毅然决然必然完成签到,获得积分10
3秒前
Flute发布了新的文献求助10
4秒前
wang发布了新的文献求助10
5秒前
淡然的芷荷完成签到 ,获得积分10
5秒前
gejing发布了新的文献求助20
5秒前
6秒前
隐形曼青应助薛wen晶采纳,获得30
6秒前
Yang发布了新的文献求助20
7秒前
hua完成签到,获得积分10
7秒前
8秒前
8秒前
YH完成签到,获得积分10
8秒前
9秒前
XU博士完成签到,获得积分10
9秒前
yyou关注了科研通微信公众号
10秒前
11秒前
wangziyuan完成签到,获得积分10
11秒前
FFFFcom发布了新的文献求助10
11秒前
一川完成签到,获得积分10
11秒前
gejing完成签到,获得积分10
13秒前
BG发布了新的文献求助10
13秒前
情怀应助爱吃火锅采纳,获得10
13秒前
13秒前
14秒前
14秒前
小马甲应助cassiel采纳,获得10
14秒前
14秒前
泪雨煊发布了新的文献求助10
15秒前
星新汐完成签到,获得积分10
15秒前
sylinmm完成签到,获得积分10
15秒前
Jackcaosky发布了新的文献求助10
15秒前
DarrenVan完成签到,获得积分10
15秒前
木头完成签到,获得积分10
16秒前
wang完成签到,获得积分10
16秒前
wzx完成签到,获得积分10
16秒前
温乘云发布了新的文献求助10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering 200
Parallel Optimization 200
Artificial bee colony algorithm 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835390
求助须知:如何正确求助?哪些是违规求助? 3377738
关于积分的说明 10500252
捐赠科研通 3097373
什么是DOI,文献DOI怎么找? 1705674
邀请新用户注册赠送积分活动 820675
科研通“疑难数据库(出版商)”最低求助积分说明 772210