清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Synthetic CT generation from MRI using 3D transformer‐based denoising diffusion model

磁共振成像 计算机科学 磁共振弥散成像 人工智能 降噪 放射治疗计划 核医学 模式识别(心理学) 医学 放射治疗 放射科
作者
Shaoyan Pan,Elham Abouei,Jacob Wynne,Chih‐Wei Chang,Tonghe Wang,Richard L. J. Qiu,Yuheng Li,Junbo Peng,Justin Roper,Pretesh Patel,David S. Yu,Hui Mao,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (4): 2538-2548 被引量:66
标识
DOI:10.1002/mp.16847
摘要

Abstract Background and purpose Magnetic resonance imaging (MRI)‐based synthetic computed tomography (sCT) simplifies radiation therapy treatment planning by eliminating the need for CT simulation and error‐prone image registration, ultimately reducing patient radiation dose and setup uncertainty. In this work, we propose a MRI‐to‐CT transformer‐based improved denoising diffusion probabilistic model (MC‐IDDPM) to translate MRI into high‐quality sCT to facilitate radiation treatment planning. Methods MC‐IDDPM implements diffusion processes with a shifted‐window transformer network to generate sCT from MRI. The proposed model consists of two processes: a forward process, which involves adding Gaussian noise to real CT scans to create noisy images, and a reverse process, in which a shifted‐window transformer V‐net (Swin‐Vnet) denoises the noisy CT scans conditioned on the MRI from the same patient to produce noise‐free CT scans. With an optimally trained Swin‐Vnet, the reverse diffusion process was used to generate noise‐free sCT scans matching MRI anatomy. We evaluated the proposed method by generating sCT from MRI on an institutional brain dataset and an institutional prostate dataset. Quantitative evaluations were conducted using several metrics, including Mean Absolute Error (MAE), Peak Signal‐to‐Noise Ratio (PSNR), Multi‐scale Structure Similarity Index (SSIM), and Normalized Cross Correlation (NCC). Dosimetry analyses were also performed, including comparisons of mean dose and target dose coverages for 95% and 99%. Results MC‐IDDPM generated brain sCTs with state‐of‐the‐art quantitative results with MAE 48.825 ± 21.491 HU, PSNR 26.491 ± 2.814 dB, SSIM 0.947 ± 0.032, and NCC 0.976 ± 0.019. For the prostate dataset: MAE 55.124 ± 9.414 HU, PSNR 28.708 ± 2.112 dB, SSIM 0.878 ± 0.040, and NCC 0.940 ± 0.039. MC‐IDDPM demonstrates a statistically significant improvement (with p < 0.05) in most metrics when compared to competing networks, for both brain and prostate synthetic CT. Dosimetry analyses indicated that the target dose coverage differences by using CT and sCT were within ± 0.34%. Conclusions We have developed and validated a novel approach for generating CT images from routine MRIs using a transformer‐based improved DDPM. This model effectively captures the complex relationship between CT and MRI images, allowing for robust and high‐quality synthetic CT images to be generated in a matter of minutes. This approach has the potential to greatly simplify the treatment planning process for radiation therapy by eliminating the need for additional CT scans, reducing the amount of time patients spend in treatment planning, and enhancing the accuracy of treatment delivery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿里完成签到,获得积分10
2秒前
冷傲的擎汉完成签到 ,获得积分10
15秒前
wang5945完成签到 ,获得积分10
17秒前
uppercrusteve完成签到,获得积分10
18秒前
青雾雨完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
38秒前
炳灿完成签到 ,获得积分10
39秒前
DHW1703701完成签到,获得积分10
39秒前
荔枝励志完成签到 ,获得积分10
1分钟前
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
闲人颦儿完成签到,获得积分0
1分钟前
ceeray23发布了新的文献求助20
1分钟前
wujiwuhui完成签到 ,获得积分10
1分钟前
飞云完成签到 ,获得积分10
1分钟前
眯眯眼的安雁完成签到 ,获得积分10
1分钟前
似水流年完成签到 ,获得积分10
1分钟前
hzauhzau完成签到 ,获得积分10
2分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
william完成签到,获得积分10
3分钟前
红茸茸羊完成签到 ,获得积分10
3分钟前
休斯顿完成签到,获得积分10
4分钟前
friend516完成签到 ,获得积分10
4分钟前
氕氘氚完成签到 ,获得积分10
4分钟前
tiantian完成签到 ,获得积分10
4分钟前
千空完成签到 ,获得积分10
4分钟前
黑猫老师完成签到 ,获得积分10
4分钟前
彩色的芷容完成签到 ,获得积分10
4分钟前
4分钟前
ceeray23发布了新的文献求助20
5分钟前
JamesPei应助waxxi采纳,获得10
5分钟前
长毛象完成签到 ,获得积分10
5分钟前
香蕉觅云应助科研通管家采纳,获得10
5分钟前
ywzwszl完成签到,获得积分0
6分钟前
zzgpku完成签到,获得积分0
6分钟前
量子星尘发布了新的文献求助10
6分钟前
科研通AI6应助FXe采纳,获得10
6分钟前
王波完成签到 ,获得积分10
6分钟前
drtianyunhong完成签到,获得积分10
6分钟前
超帅的开山完成签到 ,获得积分10
6分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771600
捐赠科研通 4614846
什么是DOI,文献DOI怎么找? 2530239
邀请新用户注册赠送积分活动 1499103
关于科研通互助平台的介绍 1467551