聚氨酯
疏水
疏水效应
接触角
回转半径
聚合物
分子
黄原胶
分子动力学
材料科学
高分子化学
环氧乙烷
化学工程
分子间力
复合材料
化学
有机化学
共聚物
计算化学
工程类
流变学
作者
Junqing Meng,Jie Wang,Chunhui Lyu,Lijuan Wang,Haiyan Chen,Yingpei Lyu,Baisheng Nie
标识
DOI:10.1016/j.molliq.2024.124200
摘要
The drag reduction synergy of four types of high-molecular polymers, namely polyacrylamide, poly(ethylene oxide), xanthan gum, and guar gum, with polyurethane hydrophobic surfaces, was investigated by both experiments and molecular simulations. The synergistic mechanisms of polymers and hydrophobic surfaces were revealed using Monte Carlo and molecular dynamics simulations in terms of interfacial interactions between polymers and water molecules, intermolecular interactions, and the adsorption conformation of polymers on hydrophobic surfaces. The addition of the polymer improved the hydrophobicity of the polyurethane surface, with flexible polymers having a more substantial effect than rigid polymers, according to both simulations and contact angle experiments. Furthermore, based on the transient configuration of polymer and water molecules moving on the hydrophobic surface, the kinetic process is divided into three stages: water molecule aggregation, water molecule-induced deformation, and polymer extension on the hydrophobic surface. Meanwhile, PAM and PEO combine directly with hydrophobic surfaces and form a cover layer with water molecules, whereas XG and GG prefer to form aggregates with water molecules first and then transfer to hydrophobic surfaces. The PAM-polyurethane hydrophobic surface, in particular, has a better synergistic effect than others, and its synergistic mechanism is related to the larger radius of gyration, stronger interaction with water molecules, and higher stability of the drag reduction system.
科研通智能强力驱动
Strongly Powered by AbleSci AI