An automatic end-to-end chemical synthesis development platform powered by large language models

计算机科学 RDF公司 链接数据 语义网 万维网
作者
Yixiang Ruan,Chenyin Lu,Ning Xu,Yuchen He,Yi-Xin Chen,Jian Zhang,Jun Xuan,Jian‐Zhang Pan,Qun Fang,Hanyu Gao,Xiaodong Shen,Ning Ye,Qiang Zhang,Yiming Mo
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:15 (1) 被引量:5
标识
DOI:10.1038/s41467-024-54457-x
摘要

The rapid emergence of large language model (LLM) technology presents promising opportunities to facilitate the development of synthetic reactions. In this work, we leveraged the power of GPT-4 to build an LLM-based reaction development framework (LLM-RDF) to handle fundamental tasks involved throughout the chemical synthesis development. LLM-RDF comprises six specialized LLM-based agents, including Literature Scouter, Experiment Designer, Hardware Executor, Spectrum Analyzer, Separation Instructor, and Result Interpreter, which are pre-prompted to accomplish the designated tasks. A web application with LLM-RDF as the backend was built to allow chemist users to interact with automated experimental platforms and analyze results via natural language, thus, eliminating the need for coding skills and ensuring accessibility for all chemists. We demonstrated the capabilities of LLM-RDF in guiding the end-to-end synthesis development process for the copper/TEMPO catalyzed aerobic alcohol oxidation to aldehyde reaction, including literature search and information extraction, substrate scope and condition screening, reaction kinetics study, reaction condition optimization, reaction scale-up and product purification. Furthermore, LLM-RDF's broader applicability and versability was validated on various synthesis tasks of three distinct reactions (SNAr reaction, photoredox C-C cross-coupling reaction, and heterogeneous photoelectrochemical reaction). The rise of large language model (LLM) technology offers new opportunities for advancing chemical synthesis. Here, the authors developed an LLM-based reaction development framework (LLM-RDF) to copilot the design and experimental tasks throughout the end-to-end chemical synthesis development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhh完成签到,获得积分10
刚刚
刚刚
hjy发布了新的文献求助10
刚刚
帅哥吴克完成签到,获得积分10
1秒前
zm完成签到,获得积分10
1秒前
NXU发布了新的文献求助10
1秒前
chowjb完成签到,获得积分10
2秒前
MZ完成签到,获得积分0
2秒前
luoluo完成签到,获得积分10
2秒前
3秒前
3秒前
nine2652完成签到 ,获得积分0
4秒前
Anyemzl完成签到,获得积分10
4秒前
yy爱科研完成签到,获得积分10
4秒前
谢惠茹完成签到,获得积分10
4秒前
爱笑孤容完成签到,获得积分10
5秒前
guajiguaji完成签到,获得积分10
6秒前
时冬冬完成签到,获得积分0
7秒前
怡然灵珊完成签到,获得积分10
7秒前
研友_Z1xNWn完成签到,获得积分10
8秒前
想把太阳揣兜里完成签到,获得积分10
9秒前
SN发布了新的文献求助10
9秒前
姜茶完成签到 ,获得积分10
10秒前
CodeCraft应助科研小白采纳,获得10
10秒前
难过板栗给冷酷青枫的求助进行了留言
10秒前
10秒前
简单的白云完成签到,获得积分10
10秒前
doctorhyh完成签到,获得积分10
11秒前
12秒前
信封完成签到 ,获得积分10
12秒前
entang完成签到,获得积分10
13秒前
13秒前
等风来完成签到 ,获得积分10
13秒前
小章鱼完成签到,获得积分10
13秒前
13秒前
小阿飞完成签到,获得积分10
14秒前
彭a完成签到,获得积分10
15秒前
库凯伊完成签到,获得积分10
15秒前
欢喜蛋挞发布了新的文献求助10
17秒前
土豆完成签到,获得积分10
17秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830597
求助须知:如何正确求助?哪些是违规求助? 3372918
关于积分的说明 10475947
捐赠科研通 3092779
什么是DOI,文献DOI怎么找? 1702293
邀请新用户注册赠送积分活动 818913
科研通“疑难数据库(出版商)”最低求助积分说明 771153