DeepCCDS: Interpretable Deep Learning Framework for Predicting Cancer Cell Drug Sensitivity through Characterizing Cancer Driver Signals

可解释性 机器学习 计算机科学 人工智能 深度学习 灵敏度(控制系统) 特征选择 人工神经网络 癌症 特征(语言学) 癌症医学 医学 工程类 电子工程 内科学 语言学 哲学
作者
Jiashuo Wu,Jiyin Lai,Xilong Zhao,Ziyi Wang,Yongbao Zhang,Liqiang Wang,Yinchun Su,Yalan He,Siyuan Li,Ying Jiang,Junwei Han
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202416958
摘要

Abstract Accurate characterization of cellular states is the foundation for precise prediction of drug sensitivity in cancer cell lines, which in turn is fundamental to realizing precision oncology. However, current deep learning approaches have limitations in characterizing cellular states. They rely solely on isolated genetic markers, overlooking the complex regulatory networks and cellular mechanisms that underlie drug responses. To address this limitation, this work proposes DeepCCDS, a Deep learning framework for Cancer Cell Drug Sensitivity prediction through Characterizing Cancer Driver Signals. DeepCCDS incorporates a prior knowledge network to characterize cancer driver signals, building upon the self‐supervised neural network framework. The signals can reflect key mechanisms influencing cancer cell development and drug response, enhancing the model's predictive performance and interpretability. DeepCCDS has demonstrated superior performance in predicting drug sensitivity compared to previous state‐of‐the‐art approaches across multiple datasets. Benefiting from integrating prior knowledge, DeepCCDS exhibits powerful feature representation capabilities and interpretability. Based on these feature representations, we have identified embedding features that could potentially be used for drug screening in new indications. Further, this work demonstrates the applicability of DeepCCDS on solid tumor samples from The Cancer Genome Atlas. This work believes integrating DeepCCDS into clinical decision‐making processes can potentially improve the selection of personalized treatment strategies for cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
核桃发布了新的文献求助10
2秒前
陈陈陈发布了新的文献求助10
3秒前
5秒前
tree完成签到,获得积分10
7秒前
镜花缘完成签到,获得积分10
8秒前
期刊完成签到,获得积分0
8秒前
书生完成签到,获得积分10
9秒前
英俊的铭应助王炎欣采纳,获得10
10秒前
11秒前
打打应助天天采纳,获得10
11秒前
水枝完成签到,获得积分10
11秒前
yue完成签到,获得积分10
14秒前
18秒前
南霖发布了新的文献求助10
18秒前
陈陈陈完成签到,获得积分10
18秒前
华国锋完成签到,获得积分10
19秒前
酷波er应助于哄哄采纳,获得10
20秒前
20秒前
核桃发布了新的文献求助10
22秒前
22秒前
24秒前
董科研严完成签到,获得积分10
24秒前
美少叔叔发布了新的文献求助10
25秒前
猫咪老师应助李俊枫采纳,获得30
26秒前
Li应助华国锋采纳,获得20
26秒前
26秒前
aa完成签到,获得积分10
28秒前
wwwwc完成签到,获得积分10
28秒前
28秒前
科研通AI5应助prawn218采纳,获得10
29秒前
收手吧大哥应助元谷雪采纳,获得10
29秒前
方羽发布了新的文献求助10
30秒前
沐风应助鸭鸭采纳,获得20
31秒前
活泼的白开水完成签到,获得积分10
32秒前
41秒前
44秒前
45秒前
46秒前
秦思远发布了新的文献求助10
48秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844990
求助须知:如何正确求助?哪些是违规求助? 3387209
关于积分的说明 10548151
捐赠科研通 3107884
什么是DOI,文献DOI怎么找? 1712214
邀请新用户注册赠送积分活动 824280
科研通“疑难数据库(出版商)”最低求助积分说明 774683