Screening of Breast Cancer from Sweat Samples Analyzed by 2-Dimensional Gas Chromatography-Mass Spectrometry: A Preliminary Study

乳腺癌 气相色谱-质谱法 逻辑回归 汗水 质谱法 色谱法 保乳手术 主成分分析 化学 医学 癌症 肿瘤科 内科学 人工智能 计算机科学 乳房切除术
作者
Michelle Leemans,Vincent Cuzuel,Pierre Bauër,Hind Baba Aïssa,Gabriel Cournelle,Aurélien Baelde,Aurélie Thuleau,Guillaume Cognon,Nicolas Pouget,Eugénie Guillot,Isabelle Fromantin,Étienne Audureau
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:15 (11): 2939-2939 被引量:6
标识
DOI:10.3390/cancers15112939
摘要

Breast cancer (BC) remains one of the most commonly diagnosed malignancies in women. There is increasing interest in the development of non-invasive screening methods. Volatile organic compounds (VOCs) emitted through the metabolism of cancer cells are possible novel cancer biomarkers. This study aims to identify the existence of BC-specific VOCs in the sweat of BC patients. Sweat samples from the breast and hand area were collected from 21 BC participants before and after breast tumor ablation. Thermal desorption coupled with two-dimensional gas chromatography and mass spectrometry was used to analyze VOCs. A total of 761 volatiles from a homemade human odor library were screened on each chromatogram. From those 761 VOCs, a minimum of 77 VOCs were detected within the BC samples. Principal component analysis showed that VOCs differ between the pre- and post-surgery status of the BC patients. The Tree-based Pipeline Optimization Tool identified logistic regression as the best-performing machine learning model. Logistic regression modeling identified VOCs that distinguish the pre-and post-surgery state in BC patients on both the breast and hand area with sensitivities close to 1. Further, Shapley additive explanations and the probe variable method identified the most important and pertinent VOCs distinguishing pre- and post-operative status which are mostly of distinct origin for the hand and breast region. Results suggest the possibility to identify endogenous metabolites linked to BC, hence proposing this innovative pipeline as a stepstone to discovering potential BC biomarkers. Large-scale studies in a multi-centered VOC analysis setting must be carried out to validate obtained findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研专家发布了新的文献求助20
刚刚
1秒前
悦耳溪流完成签到,获得积分10
1秒前
1秒前
feijelly完成签到,获得积分10
2秒前
2秒前
十字路口完成签到,获得积分10
3秒前
小赵完成签到,获得积分10
3秒前
3秒前
Owen应助安谢采纳,获得10
3秒前
bbecky完成签到,获得积分10
4秒前
Jjjjj完成签到,获得积分10
4秒前
5秒前
碧蓝幻灵发布了新的文献求助10
5秒前
YZ完成签到,获得积分10
5秒前
结实凌瑶完成签到 ,获得积分10
5秒前
酸汤肥牛完成签到,获得积分10
5秒前
陶醉如柏完成签到,获得积分10
5秒前
5秒前
精明的甜瓜完成签到,获得积分20
6秒前
ding应助djxdjt采纳,获得10
6秒前
6秒前
ShawnJ发布了新的文献求助10
7秒前
7秒前
7秒前
开放凡桃完成签到,获得积分10
7秒前
lx发布了新的文献求助90
7秒前
8秒前
兴起为你发布了新的文献求助10
8秒前
李成哲完成签到,获得积分10
9秒前
crisp发布了新的文献求助10
9秒前
VISIN完成签到,获得积分10
9秒前
yian007完成签到,获得积分10
10秒前
10秒前
曙光完成签到,获得积分10
10秒前
江添盛望发布了新的文献求助10
10秒前
qimingran完成签到,获得积分10
10秒前
Flos关注了科研通微信公众号
10秒前
10秒前
混沌完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051