Electronic and magnetic properties of Fe1-xCoxSi alloys were investigated by using a full-potential linear augmented-plane-wave method based on density functional theory. Electronic structure calculation demonstrates that half-metallic property appears in the Fe-rich region of 0 < x ≤ 0.25, while the alloys turn out to be a magnetic metal for x > 0.25. The concentration dependence of the magnetic moment of the alloys can be understood by the fixed Fermi level at minority band in Fe-rich region, as well as at the majority band in Co-rich region. In Fe-rich alloys, the electronic structure and the magnetic properties at Fe site depend mainly on the spin-polarization of nearest neighbouring Co atoms, while in Co-rich alloys, these features at Co site arise mainly from the neighbours of Fe atoms.