Tracing Truth and Rumor Diffusions Over Mobile Social Networks: Who are the Initiators?

谣言 计算机科学 人气 跟踪(心理语言学) 基本事实 集合(抽象数据类型) 理论计算机科学 人工智能 计算机安全 法学 政治学 程序设计语言 哲学 语言学
作者
Shan Qu,Hui Xu,Luoyi Fu,Huan Long,Xinbing Wang,Guihai Chen,Chenghu Zhou
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:22 (4): 2473-2490 被引量:8
标识
DOI:10.1109/tmc.2021.3119362
摘要

With the increasing popularity of mobile devices, each user is able to conveniently acquire messages from others, and share diverse forms of information, like texts, images, or videos through online mobile apps. The full freedom of speech makes a great amount of truth (i.e., true information) and rumor (i.e., false information) propagate rapidly in a hybrid way through mobile platforms. As a huge variety of information floods pouring over us each day, identifying the authenticity of massive events becomes a necessary task to maintain the stability of Mobile Social Networks (MSNs). An important way to realize it is to trace their diffusions and make judgements according to the reliability of sources. With this regard, this paper proposes a diffusion model that characterizes the simultaneous diffusion of both truth and rumor in realistic MSNs, and makes the first attempt to figure out their respective sources. The problem of interest can be stated as: Given an outcome of cascade of both truth and rumor in MSNs, i.e., a set of nodes that might be the ignorant, the spreader of truth or rumor, or simply the silent receiver, how can we infer both truth sources and rumor sources? Different from previous sources detection works considering single type of nodes, the interplay between truth diffusions and rumor diffusions makes the conventional methods not work. To answer this question, we aim to maximize the similarity index , i.e., the number of nodes possessing the same states between the resulting network triggered by our estimated sources with the proposed diffusion model and the given observation network. Compared with existing techniques to trace diffusions of truth or rumor, it is much harder to find two kinds of sets at the same time, including truth sources and rumor sources, due to two primary reasons: (i) our biset optimization makes the submodularity techniques fail; (ii) our objective function is proven to be non-bisubmodular. To overcome above limitations, we first convert the objective similarity index into a bisubmodular function by virtue of set covering. Based on this, we propose an approximation algorithm called Truth and Rumor Sources Detection (TRSD) algorithm via multiple reverse samplings with a provable $\frac{1}{4(1+\epsilon)^2}$ approximation ratio. Further, a novel “time reversal” sources optimization strategy is proposed to converge the number of output sources from TRSD to a steady state. The effectiveness of our models and algorithms are empirical validated in two various datasets, from which we observe an up to 15% of similarity index gain as well as a narrowed down gap 0.6% to the ground truth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ttimer完成签到,获得积分10
2秒前
chenkj完成签到,获得积分10
7秒前
EricSai完成签到,获得积分10
8秒前
漆黑完成签到,获得积分10
8秒前
精明寒松完成签到 ,获得积分10
10秒前
10秒前
不回首完成签到 ,获得积分10
10秒前
zhangxinxin发布了新的文献求助10
13秒前
17秒前
飘逸问薇完成签到 ,获得积分10
18秒前
zhangjianzeng完成签到 ,获得积分10
19秒前
路在脚下完成签到 ,获得积分10
19秒前
roundtree完成签到 ,获得积分0
20秒前
leapper完成签到 ,获得积分10
22秒前
okawatson发布了新的文献求助10
24秒前
吴小白完成签到 ,获得积分10
30秒前
烟花应助okawatson采纳,获得10
31秒前
孙哈哈完成签到 ,获得积分10
35秒前
JevonCheung完成签到 ,获得积分10
35秒前
研友_ZA2B68完成签到,获得积分0
35秒前
339564965完成签到,获得积分10
37秒前
TianFuAI完成签到,获得积分10
37秒前
一1完成签到 ,获得积分10
38秒前
Helios完成签到,获得积分10
39秒前
ccc完成签到,获得积分10
39秒前
liao完成签到 ,获得积分10
40秒前
风信子完成签到,获得积分10
40秒前
source完成签到,获得积分10
40秒前
只想顺利毕业的科研狗完成签到,获得积分10
41秒前
okawatson完成签到,获得积分10
42秒前
lu完成签到,获得积分10
42秒前
吐司炸弹完成签到,获得积分10
42秒前
xueshidaheng完成签到,获得积分0
42秒前
mayfly完成签到,获得积分10
43秒前
nanostu完成签到,获得积分10
44秒前
Brief完成签到,获得积分10
44秒前
inu1255完成签到,获得积分0
44秒前
儒雅的若翠完成签到,获得积分10
45秒前
Lucas应助科研通管家采纳,获得10
45秒前
SciGPT应助科研通管家采纳,获得10
45秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4043676
求助须知:如何正确求助?哪些是违规求助? 3581384
关于积分的说明 11383942
捐赠科研通 3308782
什么是DOI,文献DOI怎么找? 1821149
邀请新用户注册赠送积分活动 893590
科研通“疑难数据库(出版商)”最低求助积分说明 815753