生物
寄主(生物学)
人类免疫缺陷病毒(HIV)
人类白细胞抗原
多样性(政治)
人口
分辨率(逻辑)
高分辨率
进化生物学
遗传学
计算生物学
病毒学
遥感
抗原
环境卫生
计算机科学
人工智能
社会学
地质学
医学
人类学
作者
Yang Luo,Masahiro Kanai,Wanson Choi,Xinyi Li,Saori Sakaue,Kenichi Yamamoto,Kotaro Ogawa,María Gutiérrez‐Arcelus,Peter K. Gregersen,Philip E. Stuart,James T. Elder,Lukas Forer,Sebastian Schönherr,Christian Fuchsberger,Albert V. Smith,Jacques Fellay,Mary Carrington,David W. Haas,Xiuqing Guo,Colin N. A. Palmer
出处
期刊:Nature Genetics
[Nature Portfolio]
日期:2021-10-01
卷期号:53 (10): 1504-1516
被引量:111
标识
DOI:10.1038/s41588-021-00935-7
摘要
Fine-mapping to plausible causal variation may be more effective in multi-ancestry cohorts, particularly in the MHC, which has population-specific structure. To enable such studies, we constructed a large (n = 21,546) HLA reference panel spanning five global populations based on whole-genome sequences. Despite population-specific long-range haplotypes, we demonstrated accurate imputation at G-group resolution (94.2%, 93.7%, 97.8% and 93.7% in admixed African (AA), East Asian (EAS), European (EUR) and Latino (LAT) populations). Applying HLA imputation to genome-wide association study data for HIV-1 viral load in three populations (EUR, AA and LAT), we obviated effects of previously reported associations from population-specific HIV studies and discovered a novel association at position 156 in HLA-B. We pinpointed the MHC association to three amino acid positions (97, 67 and 156) marking three consecutive pockets (C, B and D) within the HLA-B peptide-binding groove, explaining 12.9% of trait variance. A high-resolution reference panel based on whole-genome sequencing data enables accurate imputation of HLA alleles across diverse populations and fine-mapping of HLA association signals for HIV-1 host response.
科研通智能强力驱动
Strongly Powered by AbleSci AI