生物利用度
毒性
环境化学
每日容许摄入量
化学
食品科学
毒理
生物
体重
药理学
内分泌学
有机化学
作者
Kazi Farzana Akter,Gary Owens,David E. Davey,Ravi Naidu
标识
DOI:10.1007/0-387-27565-7_3
摘要
Although it is now commonly accepted that toxicity and bioavailability varies with As species, extensive research has been carried out on biological and environmental samples to assess toxicity and risk associated with As exposure based on total concentrations that may be in error. The health investigation guideline for the Australian environmental protection measure is 100 mg/kg (As(tot)), which would cause potential risk to human health if all the As present in a sample were bioavailable (ANZECC 1992). Similarly, the MPC for As in food is 1 mg/ kg (fresh weight), but this concentration may include contributions from As(III), AsV, and all organic species. Thus, a food substance, such as seafood, could have a high total concentration exceeding the guidelines, but most of the As would be in forms that are nontoxic to humans; i.e., the bioavailability is low, and the food would therefore be perfectly safe to eat. On the other hand, a food that has high bioavailability of As consequently is more toxic. Overall, it appears that contamination of water by As is probably more harmful to humans than As in food grains or vegetables, because As bioavailability in water is generally higher than its bioavailability in food. Nevertheless, As in food crops could make significant contribution toward total daily intake. Therefore, failure to consider the contribution of As species on their bioavailability could introduce a substantial bias into the estimation of risks associated with exposure as well as evaluation of As toxicity. In conclusion, As must be regarded as an important environmental toxicant because of its acute and chronic toxic properties and extensive presence in the environment. Much remains to be learned about its toxicology and biochemistry for better understanding of this important contaminant.
科研通智能强力驱动
Strongly Powered by AbleSci AI