Gynecological cancer prognosis using machine learning techniques: A systematic review of the last three decades (1990–2022)

机器学习 医学 模式 宫颈癌 人工智能 随机森林 荟萃分析 支持向量机 癌症 特征选择 计算机科学 肿瘤科 内科学 社会科学 社会学
作者
Joshua Sheehy,Hamish Rutledge,U. Rajendra Acharya,Hui Wen Loh,Raj Gururajan,Xiaohui Tao,Xujuan Zhou,Yuefeng Li,Tiana Gurney,Srinivas Kondalsamy‐Chennakesavan
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:139: 102536-102536 被引量:16
标识
DOI:10.1016/j.artmed.2023.102536
摘要

Many Computer Aided Prognostic (CAP) systems based on machine learning techniques have been proposed in the field of oncology. The objective of this systematic review was to assess and critically appraise the methodologies and approaches used in predicting the prognosis of gynecological cancers using CAPs.Electronic databases were used to systematically search for studies utilizing machine learning methods in gynecological cancers. Study risk of bias (ROB) and applicability were assessed using the PROBAST tool. 139 studies met the inclusion criteria, of which 71 predicted outcomes for ovarian cancer patients, 41 predicted outcomes for cervical cancer patients, 28 predicted outcomes for uterine cancer patients, and 2 predicted outcomes for gynecological malignancies broadly.Random forest (22.30 %) and support vector machine (21.58 %) classifiers were used most commonly. Use of clinicopathological, genomic and radiomic data as predictors was observed in 48.20 %, 51.08 % and 17.27 % of studies, respectively, with some studies using multiple modalities. 21.58 % of studies were externally validated. Twenty-three individual studies compared ML and non-ML methods. Study quality was highly variable and methodologies, statistical reporting and outcome measures were inconsistent, preventing generalized commentary or meta-analysis of performance outcomes.There is significant variability in model development when prognosticating gynecological malignancies with respect to variable selection, machine learning (ML) methods and endpoint selection. This heterogeneity prevents meta-analysis and conclusions regarding the superiority of ML methods. Furthermore, PROBAST-mediated ROB and applicability analysis demonstrates concern for the translatability of existing models. This review identifies ways that this can be improved upon in future works to develop robust, clinically translatable models within this promising field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
随机昵称发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
mic完成签到,获得积分10
6秒前
创新发布了新的文献求助10
6秒前
6秒前
脑洞疼应助明钟达采纳,获得10
7秒前
8秒前
欢喜火车发布了新的文献求助10
11秒前
mic发布了新的文献求助10
11秒前
疯狂的向日葵完成签到 ,获得积分10
13秒前
13秒前
ddd发布了新的文献求助10
13秒前
清晨牛完成签到,获得积分10
14秒前
李李发布了新的文献求助10
16秒前
李健的小迷弟应助Lydia采纳,获得10
16秒前
16秒前
踏实晓啸完成签到,获得积分10
16秒前
小木得霖发布了新的文献求助10
17秒前
可爱的函函应助邹秋雨采纳,获得10
20秒前
科研通AI5应助橙子采纳,获得10
20秒前
20秒前
22秒前
NexusExplorer应助ddd采纳,获得10
22秒前
23秒前
23秒前
huahua关注了科研通微信公众号
24秒前
NexusExplorer应助dsd采纳,获得10
24秒前
24秒前
123完成签到,获得积分10
25秒前
whuhustwit发布了新的文献求助10
25秒前
小杜小杜应助限量款小辰采纳,获得20
26秒前
27秒前
李李完成签到 ,获得积分20
27秒前
王jh发布了新的文献求助10
27秒前
heheha完成签到,获得积分10
27秒前
明钟达发布了新的文献求助10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794759
求助须知:如何正确求助?哪些是违规求助? 3339605
关于积分的说明 10296669
捐赠科研通 3056347
什么是DOI,文献DOI怎么找? 1676961
邀请新用户注册赠送积分活动 804963
科研通“疑难数据库(出版商)”最低求助积分说明 762244