Terrain‐aware path planning via semantic segmentation and uncertainty rejection filter with adversarial noise for mobile robots

运动规划 地形 移动机器人 计算机科学 噪音(视频) 计算机视觉 路径(计算) 分割 人工智能 机器人 滤波器(信号处理) 对抗制 地理 图像(数学) 地图学 程序设计语言
作者
Kangneoung Lee,Kiju Lee
出处
期刊:Journal of Field Robotics [Wiley]
标识
DOI:10.1002/rob.22411
摘要

Abstract In ground mobile robots, effective path planning relies on their ability to assess the types and conditions of the surrounding terrains. Neural network‐based methods, which primarily use visual images for terrain classification, are commonly employed for this purpose. However, the reliability of these models can vary due to inherent discrepancies between the training images and the actual environment, leading to erroneous classifications and operational failures. Retraining models with additional images from the actual operating environment may enhance performance, but obtaining these images is often impractical or impossible. Moreover, retraining requires substantial offline processing, which cannot be performed online by the robot within an embedded processor. To address this issue, this paper proposes a neural network‐based terrain classification model, trained using an existing data set, with a novel uncertainty rejection filter (URF) for terrain‐aware path planning of mobile robots operating in unknown environments. A robot, equipped with a pretrained model, initially collects a small number of images (10 in this work) from its current environment to set the target uncertainty ratio of the URF. The URF then dynamically adjusts its sensitivity parameters to identify uncertain regions and assign associated traversal costs. This process occurs entirely online, without the need for offline procedures. The presented method was evaluated through simulations and physical experiments, comparing the point‐to‐point trajectories of a mobile robot equipped with (1) the neural network‐based terrain classification model combined with the presented adaptive URF, (2) the classification model without the URF, and (3) the classification model combined with a nonadaptive version of the URF. Path planning performance measured the Hausdorff distances between the desired and actual trajectories and revealed that the adaptive URF significantly improved performance in both simulations and physical experiments (conducted 10 times for each setting). Statistical analysis via t ‐tests confirmed the significance of these results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
柠稚发布了新的文献求助50
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
Rylee发布了新的文献求助10
3秒前
Kristal发布了新的文献求助10
4秒前
4秒前
饼干脆完成签到,获得积分10
5秒前
和谐的孱发布了新的文献求助30
5秒前
5秒前
完美世界应助天真南松采纳,获得10
5秒前
Return发布了新的文献求助10
5秒前
秀丽菠萝发布了新的文献求助10
6秒前
6秒前
泡在冰里发布了新的文献求助10
6秒前
6秒前
小仙女完成签到,获得积分10
6秒前
傲娇老五发布了新的文献求助10
6秒前
莫莫完成签到,获得积分10
7秒前
齐济发布了新的文献求助30
7秒前
苗觉觉完成签到,获得积分10
7秒前
YYyw完成签到,获得积分10
8秒前
彩霞发布了新的文献求助10
9秒前
huang完成签到,获得积分10
10秒前
geats发布了新的文献求助30
10秒前
领导范儿应助一线西风采纳,获得10
10秒前
11秒前
英俊的铭应助美晶采纳,获得10
11秒前
FashionBoy应助祺悆亼采纳,获得10
12秒前
默默摇伽完成签到 ,获得积分10
12秒前
灰灰完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
藤小春完成签到,获得积分10
15秒前
Fa完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649420
求助须知:如何正确求助?哪些是违规求助? 4778097
关于积分的说明 15048147
捐赠科研通 4808316
什么是DOI,文献DOI怎么找? 2571476
邀请新用户注册赠送积分活动 1527911
关于科研通互助平台的介绍 1486774