纳米纤维
纤维素
污染物
化学工程
材料科学
化学
复合材料
有机化学
工程类
作者
Prashant D. Sarvalkar,Rajiv S. Vhatkar,Kiran Kumar K. Sharma
出处
期刊:Langmuir
[American Chemical Society]
日期:2025-01-29
被引量:5
标识
DOI:10.1021/acs.langmuir.4c04613
摘要
In this study, we report the modification of a monolithic γ-aluminum oxy-hydroxide (γ-AlOOH) aerogel with cellulose nanofibers (CNFs) using the sol-gel method via supercritical drying. The optimized 2% CNF (w/w) results in a monolithic CNF-γ-AlOOH that is amorphous in nature, along with C-C and C-O-C functional groups. Transmission electron microscopy (TEM) images of the as-synthesized CNF-γ-AlOOH showed CNF embedded in the γ-AlOOH aerogel. The adsorption capacities were determined using azo dyes: methylene blue (MB) and crystal violet (CV), and heavy metal ions: lead [Pb(II)], uranium [U(VI)], and arsenic [As(III)] as models for environmental pollutants. The maximum adsorption capacities were 210 mg/g for CV, 204 mg/g for MB, 105 mg/g for As(III), and 339 mg/g for U(VI) at a pH of 7, whereas Pb(II) exhibited a maximum adsorption capacity of 100 mg/g at pH 5. This is attributed to the synergistic interactions between the CNF hydroxyl groups and γ-AlOOH active sites, facilitating electrostatic and coordination interactions. The as-synthesized aerogels demonstrated high recyclability, retaining over 94% adsorption efficiency after five cycles and offering a sustainable approach to environmental remediation. These findings establish CNF-γ-AlOOH aerogels as robust, eco-friendly materials for water treatment applications, with potential scalability for addressing diverse environmental pollutants. Future research should explore their application in the removal of emerging contaminants and optimize their synthesis for household and industrial-scale implementation.
科研通智能强力驱动
Strongly Powered by AbleSci AI