单层
铁磁性
凝聚态物理
过渡金属
极化(电化学)
金属
材料科学
纳米技术
物理
化学
冶金
物理化学
有机化学
催化作用
作者
Shivani Kumawat,Chandan Kumar Vishwakarma,Mohd Zeeshan,Indranil Mal,Sunil Kumar,B. K. Mani
出处
期刊:Cornell University - arXiv
日期:2024-12-14
标识
DOI:10.48550/arxiv.2412.10819
摘要
Two-dimensional (2D) Janus materials hold a great importance in spintronic and valleytronic applications due to their unique lattice structures and emergent properties. They intrinsically exhibit both an in-plane inversion and out-of-plane mirror symmetry breakings, which offer a new degree of freedom to electrons in the material. One of the main limitations in the multifunctional applications of these materials is, however, that, they are usually non-magnetic in nature. Here, using first-principles calculations, we propose to induce magnetic degree of freedom in non-magnetic WSTe via doping with transition metal (TM) elements -- Fe, Mn and Co. Further, we comprehensively probe the electronic, spintronic and valleytronic properties in these systems. Our simulations predict intrinsic Rashba and Zeeman-type spin splitting in pristine WSTe. The obtained Rashba parameter is $\sim$ 422 meV\AA\; along the $\Gamma - K$ direction. Our study shows a strong dependence on uniaxial and biaxial strains where we observe an enhancement of $\sim$ 2.1\% with 3\% biaxial compressive strain. The electronic structure of TM-substituted WSTe reveals half-metallic nature for 6.25 and 18.75\% of Fe, 25\% of Mn, and 18.75 and 25\% of Co structures, which leads to 100\% spin polarization. The obtained values of valley polarization 65, 54.4 and 46.3 meV for 6.25\% of Fe, Mn and Co, respectively, are consistent with the literature data for other Janus materials. Further, our calculations show a strain dependent tunability of valley polarization, where we find an increasing (decreasing) trend with uniaxial and biaxial tensile (compressive) strains. We observed a maximum enhancement of $\sim$ 1.72\% for 6.25\% of Fe on application of 3\% biaxial tensile strain.
科研通智能强力驱动
Strongly Powered by AbleSci AI