已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Review of Rolling Bearing Fault Diagnosis: Data Preprocessing and Model Optimization

方位(导航) 断层(地质) 预处理器 计算机科学 数据预处理 人工智能 地质学 地震学
作者
Wenlong Fu,Shuai Li,Bin Wen,Bo Zheng,Weiqing Liao,Chao Tan
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/add7fb
摘要

Abstract Rolling bearing fault diagnosis is a critical process for ensuring the safe and efficient operation of rotating machinery. With the rapid advancements in artificial intelligence technologies, data-driven approaches have offered new perspectives for rolling bearing fault diagnosis and have significantly advanced progress in this field. However, most existing review articles primarily focus on specific models or methods, such as individual deep learning architectures, or particular signal processing techniques, but they often lack a systematic summary of optimization strategies throughout the diagnostic process. As a result, researchers are often limited to particular models or techniques when studying fault diagnosis methods, making it difficult to gain a comprehensive understanding of the role of various optimization strategies. This limitation hinders both method selection and innovation. To address this issue, this paper systematically reviews the research progress related to measurement optimization strategies for rolling bearing fault diagnosis. It conducts a comprehensive analysis from two perspectives: data preprocessing and model algorithm optimization. First, this paper highlights the measurement optimization strategies in the data preprocessing stage, including data acquisition, signal denoising, data augmentation, and feature extraction. This provides reliable support for establishing a high-quality data foundation. Subsequently, the latest advancements in model algorithm optimization strategies are thoroughly summarized, encompassing both machine learning and deep learning. Detailed analyses are conducted on the critical roles of hyperparameter tuning, network structure design, and training strategy optimization in enhancing model performance. Additionally, the potential of emerging technologies such as transfer learning and model integration techniques is discussed, focusing on their capacity to improve model generalization and adaptability to complex operating conditions. Finally, the limitations of current research are examined, and future development directions are proposed based on practical application requirements. These findings provide a reference for optimizing measurement strategies in rolling bearing fault diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhx完成签到,获得积分10
1秒前
spike发布了新的文献求助10
2秒前
李健的小迷弟应助Yanice采纳,获得10
3秒前
无问完成签到,获得积分10
3秒前
Firefly完成签到,获得积分10
3秒前
lxlcx应助努力毕业的胖秋采纳,获得40
3秒前
4秒前
lijinyu发布了新的文献求助30
5秒前
整齐凝竹完成签到 ,获得积分10
5秒前
5秒前
stuuuuuuuuuuudy完成签到 ,获得积分10
6秒前
可靠馒头完成签到,获得积分10
7秒前
Angel完成签到,获得积分20
7秒前
可乐加冰完成签到,获得积分10
8秒前
9秒前
Orange应助白宏宝采纳,获得10
9秒前
凡仔发布了新的文献求助10
10秒前
11秒前
无聊又夏完成签到,获得积分10
12秒前
今天没烦恼完成签到 ,获得积分10
12秒前
lyl关注了科研通微信公众号
13秒前
14秒前
陌殇完成签到 ,获得积分10
14秒前
大模型应助刻苦的安白采纳,获得10
15秒前
16秒前
jzy完成签到,获得积分10
16秒前
我又帅又红又专完成签到,获得积分10
18秒前
yudada完成签到 ,获得积分10
18秒前
19秒前
20秒前
24秒前
善学以致用应助苯基乙胺采纳,获得10
25秒前
26秒前
26秒前
干净南风发布了新的文献求助10
27秒前
标致的醉冬完成签到,获得积分10
27秒前
empty完成签到,获得积分10
28秒前
坦率的正豪完成签到,获得积分10
29秒前
小二郎应助王哈哈采纳,获得10
29秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
幼儿游戏与指导(第二版) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833490
求助须知:如何正确求助?哪些是违规求助? 3375943
关于积分的说明 10491212
捐赠科研通 3095520
什么是DOI,文献DOI怎么找? 1704423
邀请新用户注册赠送积分活动 820037
科研通“疑难数据库(出版商)”最低求助积分说明 771721