计算机科学
马尔可夫决策过程
稳健性(进化)
移动边缘计算
强化学习
计算卸载
最优化问题
数学优化
计算
分布式计算
边缘计算
轨迹优化
分拆(数论)
启发式
马尔可夫过程
人工智能
GSM演进的增强数据速率
最优控制
算法
生物化学
统计
化学
数学
组合数学
基因
作者
Bin Li,Rongrong Yang,Lei Liu,Junyi Wang,Ning Zhang,Mianxiong Dong
标识
DOI:10.1109/jiot.2023.3300718
摘要
For multiple Unmanned-Aerial-Vehicles (UAVs) assisted Mobile Edge Computing\n(MEC) networks, we study the problem of combined computation and communication\nfor user equipments deployed with multi-type tasks. Specifically, we consider\nthat the MEC network encompasses both communication and computation\nuncertainties, where the partial channel state information and the inaccurate\nestimation of task complexity are only available. We introduce a robust design\naccounting for these uncertainties and minimize the total weighted energy\nconsumption by jointly optimizing UAV trajectory, task partition, as well as\nthe computation and communication resource allocation in the multi-UAV\nscenario. The formulated problem is challenging to solve with the coupled\noptimization variables and the high uncertainties. To overcome this issue, we\nreformulate a multi-agent Markov decision process and propose a multi-agent\nproximal policy optimization with Beta distribution framework to achieve a\nflexible learning policy. Numerical results demonstrate the effectiveness and\nrobustness of the proposed algorithm for the multi-UAV-assisted MEC network,\nwhich outperforms the representative benchmarks of the deep reinforcement\nlearning and heuristic algorithms.\n
科研通智能强力驱动
Strongly Powered by AbleSci AI