Interpretable Machine Learning‐Assisted High‐Throughput Screening for Understanding NRR Electrocatalyst Performance Modulation between Active Center and C‐N Coordination

催化作用 价(化学) 价电子 电催化剂 化学 电化学 计算机科学 物理 电子 物理化学 电极 生物化学 量子力学 有机化学
作者
Jinxin Sun,Anjie Chen,Junming Guan,Ying Han,Yongjun Liu,Xianghong Niu,Maoshuai He,Li Shi,Jinlan Wang,Xiuyun Zhang
出处
期刊:Energy & environmental materials [Wiley]
卷期号:7 (5) 被引量:19
标识
DOI:10.1002/eem2.12693
摘要

Understanding the correlation between the fundamental descriptors and catalytic performance is meaningful to guide the design of high‐performance electrochemical catalysts. However, exploring key factors that affect catalytic performance in the vast catalyst space remains challenging for people. Herein, to accurately identify the factors that affect the performance of N 2 reduction, we apply interpretable machine learning (ML) to analyze high‐throughput screening results, which is also suited to other surface reactions in catalysis. To expound on the paradigm, 33 promising catalysts are screened from 168 carbon‐supported candidates, specifically single‐atom catalysts (SACs) supported by a BC 3 monolayer (TM@V B/C ‐N n = 0–3 ‐BC 3 ) via high‐throughput screening. Subsequently, the hybrid sampling method and XGBoost model are selected to classify eligible and non‐eligible catalysts. Through feature interpretation using Shapley Additive Explanations (SHAP) analysis, two crucial features, that is, the number of valence electrons ( N v ) and nitrogen substitution ( N n ), are screened out. Combining SHAP analysis and electronic structure calculations, the synergistic effect between an active center with low valence electron numbers and reasonable C‐N coordination (a medium fraction of nitrogen substitution) can exhibit high catalytic performance. Finally, six superior catalysts with a limiting potential lower than −0.4 V are predicted. Our workflow offers a rational approach to obtaining key information on catalytic performance from high‐throughput screening results to design efficient catalysts that can be applied to other materials and reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李尧轩发布了新的文献求助10
1秒前
13完成签到,获得积分20
1秒前
王丹丹发布了新的文献求助10
1秒前
SARON发布了新的文献求助10
2秒前
橘子完成签到,获得积分20
4秒前
GeminiWU完成签到,获得积分10
4秒前
如意枫叶发布了新的文献求助10
5秒前
诚心溪灵完成签到,获得积分20
7秒前
专注的妍发布了新的文献求助40
8秒前
9秒前
星辰大海应助什玖采纳,获得10
9秒前
桐桐应助疯狂的乐天采纳,获得10
10秒前
干净的嚣张小孩姐完成签到,获得积分10
10秒前
嘀嗒发布了新的文献求助10
10秒前
2bz关闭了2bz文献求助
10秒前
ange发布了新的文献求助10
10秒前
11秒前
斯文的映真完成签到,获得积分10
11秒前
12秒前
14秒前
pilgrim应助蓝瘦香菇采纳,获得10
14秒前
万能图书馆应助龙抬头采纳,获得10
14秒前
weiwei完成签到,获得积分10
14秒前
王海海完成签到 ,获得积分10
15秒前
15秒前
极电发布了新的文献求助10
15秒前
深情安青应助任性冥王星采纳,获得10
16秒前
16秒前
yukiycc发布了新的文献求助10
18秒前
长安发布了新的文献求助30
18秒前
18秒前
18秒前
科研小白完成签到,获得积分10
19秒前
19秒前
19秒前
1638完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5272536
求助须知:如何正确求助?哪些是违规求助? 4429759
关于积分的说明 13789897
捐赠科研通 4308272
什么是DOI,文献DOI怎么找? 2364084
邀请新用户注册赠送积分活动 1359709
关于科研通互助平台的介绍 1322750