催化作用
甲醇
氧化物
金属
纳米颗粒
材料科学
无机化学
化学工程
多相催化
化学
纳米技术
有机化学
工程类
作者
Iván López‐Luque,Jannis Hack,Tania Ródenas,Wilson Henao,Bernat Mundet,Prathamesh Patil,Christian M. Pichler,Carlo Marini,Giovanni Agostini,Daniel M. Meier,Gonzalo Prieto
出处
期刊:Angewandte Chemie
[Wiley]
日期:2025-07-29
卷期号:64 (37): e202420126-e202420126
被引量:2
标识
DOI:10.1002/anie.202420126
摘要
Abstract The periphery surrounding oxide‐supported metal nanoparticles plays a crucial role in many catalytic reactions that exhibit strong metal‐oxide promotional effects. Engineering this catalytically active periphery, where kinetically relevant surface intermediates are efficiently turned over, offers a pathway to optimized performance, yet it remains challenging due to the need for precise control over nanospatial catalyst features. Herein, we address this subject for the relevant case of methanol synthesis by CO 2 hydrogenation on Cu/ZrO 2 catalysts. The methanol synthesis rate reaches a maximum at a surface‐to‐surface Cu interparticle distance of ca. 15 nm. Operando modulation–excitation diffuse reflectance infrared spectroscopy reveals that this optimal spacing maximizes the fraction of surface‐bound HCOO* intermediates, stabilized on coordinatively unsaturated Zr(IV) Lewis acid sites on the ZrO 2 support, which are dynamically involved in catalysis. This particle spacing represents a shift in the reaction's kinetic control regime and the apparent activation energy for methanol synthesis. Engineering Cu interparticle spacing to the optimal value results in exceptionally high metal‐specific methanol formation rates under industrially relevant reaction conditions. More broadly, our findings highlight that, beyond metal particle size, interparticle spacing is a key design parameter for catalyst systems featuring functional metal‐oxide interfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI