Combining spectrum, thermal, and texture features using machine learning algorithms for wheat nitrogen nutrient index estimation and model transferability analysis

可转让性 索引(排版) 算法 纹理(宇宙学) 氮气 估计 计算机科学 人工智能 机器学习 模式识别(心理学) 数据挖掘 工程类 化学 图像(数学) 有机化学 罗伊特 系统工程 万维网
作者
Shaohua Zhang,Jianzhao Duan,Xinghui Qi,Yuezhi Gao,Li He,L.X. Liu,Tiancai Guo,Wei Feng
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:222: 109022-109022 被引量:13
标识
DOI:10.1016/j.compag.2024.109022
摘要

The nitrogen nutrition index (NNI) has been extensively applied for the diagnosis of crop nitrogen status, providing insights into efficient nitrogen utilization and plant growth. In this study, we utilized a low-altitude unmanned aerial vehicle (UAV) platform, equipped with multispectral (MS), red–green–blue (RGB), and thermal infrared (TIR) cameras, to comprehensively capture wheat spectral information. The analysis of the relationship between NNI and relative yield revealed an initially linear relationship, which saturated for high NNI values. To enhance accuracy and minimize complexity, we employed a random forest (RF) – recursive feature elimination (RFE) method to select features as inputs for four machine learning (ML) models: back propagation neural network (BPNN), extreme learning machine (ELM), support vector regression (SVR), and Gaussian process regression (GPR). After feature selection, the prediction accuracies of single-sensor models were ranked as: MS > RGB > TIR. The R2 values for the four ML models were in the range of 0.54–0.75. Among multi-sensor combinations, the GPR with MS + RGB + TIR input features achieved the best results with R2 = 0.89 and RPD = 2.52. Further, the dataset was partitioned into six subsets based on location and cultivar variety to evaluate model transferability. The results showed that the transferability largely suffered during the bivariate conditions of different varieties at different locations; the transferability of the model was average improved by 11 % when GPR was combined with transfer component analysis (TCA). The accuracy and transferability of the NNI estimation models significantly improved, offering valuable guidance and methodological support for diagnosing the nitrogen nutrient status of wheat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CAI313完成签到,获得积分10
刚刚
zy发布了新的文献求助30
1秒前
1秒前
yjf完成签到 ,获得积分10
2秒前
ding应助愉快的雪珍采纳,获得10
2秒前
XUNAN完成签到,获得积分10
3秒前
选课完成签到,获得积分10
3秒前
高灵雨完成签到,获得积分10
4秒前
我就是我完成签到,获得积分10
4秒前
Abx发布了新的文献求助10
4秒前
未语的阳光完成签到 ,获得积分10
5秒前
siqilinwillbephd完成签到,获得积分10
6秒前
个性无声完成签到,获得积分10
6秒前
kimiwanano完成签到,获得积分10
6秒前
wsh发布了新的文献求助10
6秒前
2323完成签到,获得积分10
7秒前
Dellamoffy完成签到,获得积分10
7秒前
鱿鱼炒黄瓜完成签到,获得积分10
7秒前
贪玩的谷芹完成签到 ,获得积分10
7秒前
稳重的如容完成签到,获得积分10
9秒前
顾君如完成签到,获得积分10
9秒前
周周完成签到,获得积分10
9秒前
123完成签到 ,获得积分10
10秒前
随性随缘随命完成签到 ,获得积分10
10秒前
北过居庸完成签到,获得积分10
10秒前
平常的毛豆应助刘文思采纳,获得10
10秒前
ccc完成签到,获得积分10
10秒前
过时的画板完成签到,获得积分10
11秒前
卓垚完成签到,获得积分10
11秒前
xiao柒柒柒完成签到,获得积分10
11秒前
泌尿小周发布了新的文献求助10
12秒前
小二郎应助wsh采纳,获得10
13秒前
很傻的狗完成签到,获得积分10
13秒前
高贵的水杯完成签到,获得积分10
14秒前
nyfz2002发布了新的文献求助10
14秒前
lw完成签到,获得积分10
15秒前
羽羽完成签到 ,获得积分10
15秒前
16秒前
拙青完成签到,获得积分10
16秒前
祭途完成签到,获得积分10
16秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 1500
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
Happiness in the Nordic World 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3857393
求助须知:如何正确求助?哪些是违规求助? 3399877
关于积分的说明 10614552
捐赠科研通 3122237
什么是DOI,文献DOI怎么找? 1721255
邀请新用户注册赠送积分活动 829008
科研通“疑难数据库(出版商)”最低求助积分说明 777972