Using connectome-based predictive modeling to predict individual behavior from brain connectivity

计算机科学 连接体 神经影像学 磁共振弥散成像 协议(科学) 人工智能 机器学习 人类连接体项目 特征(语言学) 线性模型 计算模型 神经科学 功能连接 连接组学 磁共振成像 心理学 病理 哲学 放射科 替代医学 医学 语言学
作者
Xilin Shen,Emily S. Finn,Dustin Scheinost,Monica D. Rosenberg,Marvin M. Chun,Xenophon Papademetris,R. Todd Constable
出处
期刊:Nature Protocols [Springer Nature]
卷期号:12 (3): 506-518 被引量:1099
标识
DOI:10.1038/nprot.2016.178
摘要

This protocol describes how to develop linear models to predict individual behavior from brain connectivity data with proper cross-validation, and how to use an online tool to visualize the most predictive features of the models. Neuroimaging is a fast-developing research area in which anatomical and functional images of human brains are collected using techniques such as functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and electroencephalography (EEG). Technical advances and large-scale data sets have allowed for the development of models capable of predicting individual differences in traits and behavior using brain connectivity measures derived from neuroimaging data. Here, we present connectome-based predictive modeling (CPM), a data-driven protocol for developing predictive models of brain–behavior relationships from connectivity data using cross-validation. This protocol includes the following steps: (i) feature selection, (ii) feature summarization, (iii) model building, and (iv) assessment of prediction significance. We also include suggestions for visualizing the most predictive features (i.e., brain connections). The final result should be a generalizable model that takes brain connectivity data as input and generates predictions of behavioral measures in novel subjects, accounting for a considerable amount of the variance in these measures. It has been demonstrated that the CPM protocol performs as well as or better than many of the existing approaches in brain–behavior prediction. As CPM focuses on linear modeling and a purely data-driven approach, neuroscientists with limited or no experience in machine learning or optimization will find it easy to implement these protocols. Depending on the volume of data to be processed, the protocol can take 10–100 min for model building, 1–48 h for permutation testing, and 10–20 min for visualization of results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qianlu完成签到,获得积分10
1秒前
1秒前
汉堡包应助研友_LjDyNZ采纳,获得20
1秒前
cis2014发布了新的文献求助10
2秒前
lemon发布了新的文献求助10
2秒前
鱼香肉丝发布了新的文献求助20
3秒前
大个应助adinike采纳,获得10
4秒前
闪闪的熠彤完成签到,获得积分10
5秒前
6秒前
示羊完成签到,获得积分10
6秒前
共享精神应助bingschuan采纳,获得10
9秒前
10秒前
fly完成签到,获得积分10
10秒前
10秒前
11秒前
聪慧的小伙完成签到 ,获得积分10
11秒前
dl应助憨憨的小于采纳,获得20
13秒前
apchong发布了新的文献求助10
14秒前
微笑幻波完成签到,获得积分10
14秒前
lemon完成签到,获得积分10
14秒前
彭于晏应助须臾采纳,获得10
15秒前
15秒前
梨子完成签到,获得积分10
15秒前
生姜麻薯发布了新的文献求助10
16秒前
深情安青应助陈陈采纳,获得10
16秒前
李爱国应助鱼香肉丝采纳,获得10
17秒前
日常K人发布了新的文献求助10
17秒前
17秒前
lzr完成签到 ,获得积分10
18秒前
今后应助QSZ采纳,获得10
19秒前
格物致知完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
20秒前
科研小白完成签到,获得积分10
21秒前
matt完成签到,获得积分10
22秒前
22秒前
周一发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5389578
求助须知:如何正确求助?哪些是违规求助? 4511804
关于积分的说明 14039720
捐赠科研通 4422727
什么是DOI,文献DOI怎么找? 2429524
邀请新用户注册赠送积分活动 1422010
关于科研通互助平台的介绍 1401228