非线性系统
非线性声学
数学分析
数学
反问题
偏微分方程
跟踪(心理语言学)
反向
声学
物理
几何学
量子力学
语言学
哲学
作者
Barbara Kaltenbacher,William Rundell
摘要
<p style='text-indent:20px;'>We consider an undetermined coefficient inverse problem for a nonlinear partial differential equation occurring in high intensity ultrasound propagation as used in acoustic tomography. In particular, we investigate the recovery of the nonlinearity coefficient commonly labeled as <inline-formula><tex-math id="M1">\begin{document}$ B/A $\end{document}</tex-math></inline-formula> in the literature which is part of a space dependent coefficient <inline-formula><tex-math id="M2">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula> in the Westervelt equation governing nonlinear acoustics. Corresponding to the typical measurement setup, the overposed data consists of time trace measurements on some zero or one dimensional set <inline-formula><tex-math id="M3">\begin{document}$ \Sigma $\end{document}</tex-math></inline-formula> representing the receiving transducer array. After an analysis of the map from <inline-formula><tex-math id="M4">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula> to the overposed data, we show injectivity of its linearisation and use this as motivation for several iterative schemes to recover <inline-formula><tex-math id="M5">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula>. Numerical simulations will also be shown to illustrate the efficiency of the methods.</p>
科研通智能强力驱动
Strongly Powered by AbleSci AI