Effect of Particle Size on LiNi0.6Mn0.2Co0.2O2 Layered Oxide Performance in Li-Ion Batteries

电解质 锂(药物) 电化学 离子 氧化物 材料科学 粒子(生态学) 纳米颗粒 反应性(心理学) 电极 粒径 盐(化学) 无机化学 化学工程 纳米技术 化学 冶金 物理化学 有机化学 病理 替代医学 内分泌学 工程类 地质学 海洋学 医学
作者
Adrien Soloy,Delphine Flahaut,Joachim Allouche,Dominique Foix,Germain Salvato Vallverdu,Emmanuelle Suard,Erwan Dumont,Lucille Gal,François Weill,Laurence Croguennec
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:5 (5): 5617-5632 被引量:11
标识
DOI:10.1021/acsaem.1c03924
摘要

The layered oxide LiNi0.6Mn0.2Co0.2O2 is a very attractive positive electrode material, as shown by good reversible capacity, chemical stability, and cyclability upon long-range cycling in Li-ion batteries and, hopefully, in the near future, in all-solid-state batteries. A large panel of synthesis conditions were explored in order to tailor the size of the primary particles for powders showing structures close to the ideal 2D layered structure (i.e., with less than 3.8% Ni2+ ions in the Li+ sites). Materials with primary particle sizes ranging from 170 nm to 2 μm were obtained. Their electrochemical performance in Li-ion batteries and surface reactivity were characterized in different cycling conditions, as a function of the primary particle size. A significant impact on the performance and reactivity was observed, with obviously better reversible capacity and cyclability for the materials with primary particles ranging between 200 and 400 nm. The analysis of the solid electrolyte interphase formed at the interface between the positive electrode and the electrolyte has shown that larger particles had a larger proportion of lithium salt degradation products, induced by the larger amount of Li2CO3 at their surface. It was also shown that the degradation of the lithium salt was favored at higher cycling rate, whereas that of the organic solvents is a little more favored in larger potential windows with a higher cutoff voltage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粗心的初南完成签到,获得积分10
1秒前
Jasper应助h3xxxmax采纳,获得10
1秒前
ptjam完成签到,获得积分10
3秒前
叶剑通完成签到,获得积分10
4秒前
磊磊磊发布了新的文献求助100
5秒前
佳佳发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
8秒前
Nicole完成签到 ,获得积分10
10秒前
13秒前
13秒前
123完成签到,获得积分10
13秒前
卫傀斗发布了新的文献求助10
13秒前
佳佳完成签到,获得积分10
16秒前
李李李发布了新的文献求助10
17秒前
17秒前
罗_应助ZHANG采纳,获得10
17秒前
17秒前
gjww应助无情的数据线采纳,获得10
17秒前
18秒前
20秒前
赘婿应助singxu采纳,获得10
21秒前
22秒前
23秒前
磊磊磊完成签到,获得积分10
23秒前
大模型应助Spencer采纳,获得20
26秒前
27秒前
ginbei发布了新的文献求助10
28秒前
28秒前
28秒前
忐忑的草丛完成签到,获得积分20
29秒前
开放平蓝完成签到 ,获得积分10
31秒前
CipherSage应助omega采纳,获得10
31秒前
大胆荔枝完成签到,获得积分10
32秒前
33秒前
怦怦应助范马勇次郎采纳,获得10
33秒前
篷羽言发布了新的文献求助10
34秒前
34秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Sport in der Antike Hardcover – March 1, 2015 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2409156
求助须知:如何正确求助?哪些是违规求助? 2105152
关于积分的说明 5316165
捐赠科研通 1832615
什么是DOI,文献DOI怎么找? 913101
版权声明 560733
科研通“疑难数据库(出版商)”最低求助积分说明 488255