Enhancing building extraction from remote sensing images through UNet and transfer learning

计算机科学 学习迁移 过程(计算) 人工智能 交叉口(航空) 基线(sea) 萃取(化学) 编码器 任务(项目管理) 机器学习 计算机视觉 系统工程 海洋学 化学 色谱法 地质学 工程类 航空航天工程 操作系统
作者
Smail Ait El Asri,Ismail Negabi,Samir El Adib,Naoufal Raissouni
出处
期刊:International Journal of Computers and Applications [Taylor & Francis]
卷期号:45 (5): 413-419 被引量:1
标识
DOI:10.1080/1206212x.2023.2219117
摘要

Performing accurate extraction of buildings from remote sensing (RS) images is a crucial process with widespread applications in urban planning, disaster management, and urban monitoring. However, this task remains challenging due to the diversity and complexity of building shapes, sizes, and textures, as well as variations in lighting and weather conditions. These difficulties motivate our research to propose an improved approach for building extraction using UNet and transfer learning to address these challenges. In this work, we tested seven different backbone architectures within the UNet encoder and found that combining UNet with ResNet101 or ResNet152 yielded the best results. Based on these findings, we combined the superior performance of these base models to create a novel architecture, which achieved significant improvements over previous methods. Specifically, our method achieved a 1.33% increase in Intersection over Union (IoU) compared to the baseline UNet model. Furthermore, it demonstrated a superior performance with a 1.21% increase in IoU over UNet-ResNet101 and a 1.60% increase in IoU over UNet-ResNet152. We evaluated our proposed approach on the INRIA Aerial Image dataset and demonstrated its superiority. Our research addresses a critical need for accurate building extraction from RS images and overcomes the challenges posed by diverse building characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助one采纳,获得10
1秒前
直率新柔发布了新的文献求助10
2秒前
3秒前
稳重依云完成签到 ,获得积分10
3秒前
3秒前
嘻嘻完成签到,获得积分10
4秒前
CC完成签到 ,获得积分10
4秒前
科西西发布了新的文献求助10
6秒前
qizhixu发布了新的文献求助10
8秒前
zzz完成签到,获得积分20
8秒前
CipherSage应助liujunhong采纳,获得10
9秒前
9秒前
高点点完成签到 ,获得积分10
11秒前
执着代曼完成签到,获得积分10
11秒前
Gg完成签到,获得积分10
11秒前
桃花源的瓶起子完成签到 ,获得积分10
14秒前
SciGPT应助aaaaa采纳,获得10
14秒前
花花发布了新的文献求助10
15秒前
悟格完成签到,获得积分10
16秒前
18秒前
ww完成签到,获得积分10
18秒前
20秒前
李健的小迷弟应助花花采纳,获得10
20秒前
高兴的幻柏完成签到,获得积分10
21秒前
情怀应助min采纳,获得10
22秒前
执着代曼发布了新的文献求助10
23秒前
demom完成签到 ,获得积分10
23秒前
CodeCraft应助李李李采纳,获得10
23秒前
LBB发布了新的文献求助10
24秒前
25秒前
id完成签到,获得积分10
26秒前
开朗芸完成签到,获得积分10
27秒前
27秒前
科研通AI5应助幸福采纳,获得10
29秒前
六个核桃完成签到,获得积分10
29秒前
NexusExplorer应助柯克采纳,获得10
30秒前
31秒前
任大发发布了新的文献求助10
32秒前
34秒前
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794514
求助须知:如何正确求助?哪些是违规求助? 3339370
关于积分的说明 10295665
捐赠科研通 3056025
什么是DOI,文献DOI怎么找? 1676881
邀请新用户注册赠送积分活动 804890
科研通“疑难数据库(出版商)”最低求助积分说明 762174