Selenium treatment towards enhanced cyclic stability for single-crystal Ni-rich cathode at ultra-high voltage of 4.7 V

材料科学 阴极 电导率 纳米结构 化学工程 兴奋剂 纳米技术 高压 电压 光电子学 化学 电气工程 物理化学 工程类
作者
Zhi Zhang,Xiang Ding,Xiaobing Huang,Xinyou He,Yang Gong,Biaobiao Xiao,Jixue Shen,Xing Ou
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:482: 148905-148905 被引量:11
标识
DOI:10.1016/j.cej.2024.148905
摘要

Developing high-voltage (≥4.3 V vs Li/Li+) single-crystal Ni-rich LiNixCoyMn1-x-yO2 offers an enticing strategy to achieve high energy density for lithium-ion batteries. However, at high-voltage operation, the cathode will be vulnerable to induce the intrinsic Oα- (α < 2) migration, triggering the serious structural degradation, notorious parasitic reaction and oxygen loss, which may ultimately result in the battery performance attenuation. Herein, an outside-in oriented nanostructure is well designed and constructed on the single-crystal LiNi0.6Co0.1Mn0.3O2 (SC-NCM) cathode materials, exhibiting an "anti-aging" effect of inhibiting the escape of oxygen from SC-NCM particles during the ultra-high voltage (4.7 V) cycling. Both theoretical calculation and experimental results confirm that the outside-in nanostructure would stabilize the oxygen lattice and suppress O2 release during long-term cycling. Meanwhile, the surface modification of thin Se layer will alleviate the parasitic reactions and improve the electronic conductivity. Under the synergistic strategy of surface modification and interface doping, the obtained SC-NCM exhibits boosted cyclic stability in coin half-cell and pouch full-cell simultaneously. Therefore, the reversible capacity of LiNi0.6Co0.1Mn0.3O2 at high voltage is competitive with comercial LiNixCoyMn1-x-yO2 (x ≥ 0.8), demonstrating more superior safety ability and cyclic property. It provides an effective approach for improving the long-term performance of Ni-rich cathode materials for practical application under ultra-high working voltage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oldyang完成签到,获得积分10
2秒前
许某希完成签到 ,获得积分10
2秒前
简单的易云完成签到,获得积分10
3秒前
李小小飞完成签到,获得积分10
3秒前
小野狼完成签到,获得积分10
5秒前
GXLong完成签到,获得积分10
5秒前
加油少年完成签到,获得积分10
10秒前
金甲狮王完成签到,获得积分10
10秒前
MiManchi完成签到,获得积分10
10秒前
学吧完成签到,获得积分10
10秒前
小陈完成签到,获得积分10
11秒前
谢雷XIELei完成签到,获得积分20
12秒前
Giant06230824完成签到,获得积分10
12秒前
饱满的新之完成签到 ,获得积分10
14秒前
小洋完成签到 ,获得积分10
14秒前
ferritin完成签到 ,获得积分10
14秒前
nn完成签到,获得积分10
15秒前
ada完成签到,获得积分10
15秒前
17秒前
X先生完成签到 ,获得积分10
19秒前
21秒前
周先森完成签到,获得积分10
21秒前
magic_sweets完成签到,获得积分10
21秒前
cg完成签到 ,获得积分10
26秒前
诸葛烤鸭完成签到,获得积分10
26秒前
26秒前
QQLL发布了新的文献求助10
27秒前
科研通AI5应助zhul采纳,获得10
27秒前
安详的自中完成签到,获得积分10
29秒前
赘婿应助科研通管家采纳,获得10
30秒前
打打应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得30
31秒前
rayqiang完成签到,获得积分0
31秒前
丘比特应助科研通管家采纳,获得10
31秒前
31秒前
海豚有海完成签到 ,获得积分10
32秒前
危机的囧发布了新的文献求助10
32秒前
cdercder应助Giant06230824采纳,获得10
32秒前
hkh发布了新的文献求助10
33秒前
fool完成签到,获得积分10
37秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798557
求助须知:如何正确求助?哪些是违规求助? 3344128
关于积分的说明 10318663
捐赠科研通 3060696
什么是DOI,文献DOI怎么找? 1679782
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353