Machine learning (ML) for fluvial lithofacies identification from well logs: A hybrid classification model integrating lithofacies characteristics, logging data distributions, and ML models applicability

人工神经网络 测井 混合模型 河流 一般化 登录中 地质学 模式识别(心理学) 反向传播 人工智能 计算机科学 数据挖掘 地球物理学 数学 地貌学 数学分析 生态学 构造盆地 生物
作者
Shiyi Jiang,Panke Sun,Fengqing Lyu,Sicheng Zhu,Ruifeng Zhou,Bin Li,Taihong He,Yujian Lin,Yining Gao,Wendan Song,Huaimin Xu
标识
DOI:10.1016/j.geoen.2023.212587
摘要

Identifying lithofacies plays a central role in studying sandbody architecture and reservoir quality in fluvial reservoirs. Logging data is widely considered the most effective method for identifying subsurface lithofacies. Many machine learning methods have been developed to automatically identify lithofacies by analyzing the value or patterns of well logs. However, poor generalization of many classification models has resulted from a lack of exploration into the intrinsic relationship between lithofacies characteristics, data distribution characteristics, and classification model applicability. To address this problem, we conducted research on core description, logging curve sampling processing for layer data, and lithofacies identification using gaussian mixture model (GMM) and back-propagation neural network (BPNN) for a tight sandstone reservoir in the northern part of the Sulige gas field. We investigated the relationship between lithofacies characteristics, logging data distribution, and the performances of machine learning classification models. Based on this relationship, we developed a gaussian mixture model-backpropagation neural network hybrid classification model (GMM-BPNN). The results indicate that the logging curve sampling method reduced deviation caused by adjacent lithofacies influence, and made the lithofacies characteristics constrain the distribution characteristics of logging data, thus improving the application of GMM and BPNN. We observe that the distribution of logging data becomes more centralized as the thickness of certain lithofacies increases, thus improving the performance of the GMM applicable to the classification of centrally distributed data. Conversely, the distribution of logging data becomes more discrete as the thickness of certain lithofacies decreases, thus improving the performance of BPNN applicable to the classification of discretely distributed data. Furthermore, the GMM-BPNN (with an F1-score of 0.95) outperformed individual GMM (F1-score of 0.76) and BPNN (F1-score of 0.77). The hybrid classification model also shows better outcomes in the identification of complex lithofacies in other areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yating完成签到,获得积分10
1秒前
米糊发布了新的文献求助10
2秒前
luokm发布了新的文献求助10
2秒前
2秒前
怕黑的觅海完成签到,获得积分10
4秒前
4秒前
zhangmeng99发布了新的文献求助10
5秒前
华仔应助冷傲蛋挞采纳,获得10
5秒前
5秒前
单纯夏烟完成签到,获得积分10
5秒前
慕青应助1111采纳,获得10
6秒前
哈哈哈来打我呀完成签到,获得积分10
6秒前
6秒前
Ariaxin完成签到,获得积分10
7秒前
受伤白昼完成签到,获得积分10
7秒前
8秒前
追寻冰巧完成签到 ,获得积分10
8秒前
Lucas应助daypoi采纳,获得10
9秒前
差一点完成签到,获得积分20
9秒前
一株多肉发布了新的文献求助10
9秒前
卓若之完成签到 ,获得积分10
10秒前
共享精神应助威武好吐司采纳,获得10
10秒前
10秒前
11秒前
11秒前
踏实绮露完成签到 ,获得积分10
12秒前
突突突应助单纯夏烟采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
szh123完成签到 ,获得积分10
13秒前
13秒前
乐乐应助烂漫的金针菇采纳,获得10
15秒前
无限的半青完成签到 ,获得积分10
17秒前
万能图书馆应助yxw采纳,获得10
18秒前
李健的小迷弟应助Quinn采纳,获得30
19秒前
聪慧开山发布了新的文献求助10
19秒前
米糊发布了新的文献求助10
20秒前
21秒前
靖哥哥发布了新的文献求助10
21秒前
NexusExplorer应助leo采纳,获得10
21秒前
wanci应助七七采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536205
求助须知:如何正确求助?哪些是违规求助? 4623940
关于积分的说明 14590018
捐赠科研通 4564400
什么是DOI,文献DOI怎么找? 2501719
邀请新用户注册赠送积分活动 1480512
关于科研通互助平台的介绍 1451794