USING NETWORK ANALYSIS METHODS TO STUDY MULTIMORBIDITY PATTERNS

多发病率 相似性(几何) 聚类分析 星团(航天器) 联想(心理学) 疾病 网络分析 医学 数据挖掘 计算机科学 心理学 人工智能 内科学 物理 量子力学 图像(数学) 心理治疗师 程序设计语言
作者
Lauren E. Griffith,Alberto Brini,Edwin R. van den Heuvel,Philip St. John,Lucy Stirland,Alexandra Mayhew,Graciela Muñiz‐Terrera
出处
期刊:Innovation in Aging [University of Oxford]
卷期号:7 (Supplement_1): 643-644
标识
DOI:10.1093/geroni/igad104.2095
摘要

Abstract Multimorbidity is a risk factor for patient-important outcomes including quality of life and functional decline. Multimorbidity research has focused mainly on disease counts, with less attention to patterns among chronic conditions. Network analysis has been increasingly used to examine multimorbidity clusters, but there are no guidelines for its conduct. In 12 recent studies using network analysis, we found heterogeneity in association measures (10 different measures) and clustering algorithms (5 different methods) used to identify multimorbidity clusters. Using self-reported data on 24 diseases in community-living adults aged 45-85 from the Canadian Longitudinal Study on Aging, we conducted network analyses using the 10 association measures and 5 clustering algorithms to better understand how these choices impact the number and types of clusters identified. We compared the similarity among clusters using the adjusted Rand index (ARI); an ARI of 0 is equivalent to the diseases being randomly assigned to clusters and 1 indicates perfect agreement. Two clinicians independently identified potential disease clusters which we compared to network analyses results. We found results differed greatly across combinations of association measures and cluster algorithms. The number of clusters identified ranged from 1 to 12 and their similarity was generally very low. Compared to clinician-derived clusters, the ARIs ranged from 0 to 0.23 indicating little similarity. These analyses demonstrate the need for a systematic evaluation of the performance of network analysis methods on binary clustered data like diseases. Moreover, diseases may not cluster, and a personalized approach to the care of older adults may be needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助LYF采纳,获得10
刚刚
1秒前
CodeCraft应助galaxy采纳,获得10
1秒前
2秒前
2秒前
司空豁发布了新的文献求助10
3秒前
木易心发布了新的文献求助150
4秒前
4秒前
张成协完成签到,获得积分10
5秒前
believe发布了新的文献求助10
5秒前
ji发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
8秒前
zimuxinxin发布了新的文献求助10
9秒前
9秒前
zcx发布了新的文献求助10
10秒前
10秒前
10秒前
zjh发布了新的文献求助30
11秒前
12秒前
galaxy完成签到,获得积分20
12秒前
12秒前
活泼的诗桃完成签到,获得积分10
13秒前
司空豁发布了新的文献求助30
13秒前
15秒前
15秒前
galaxy发布了新的文献求助10
15秒前
喹唑啉发布了新的文献求助10
15秒前
妮妮关注了科研通微信公众号
16秒前
各个器官发布了新的文献求助10
16秒前
ellie0125发布了新的文献求助10
18秒前
18秒前
19秒前
20秒前
等待的南晴完成签到 ,获得积分10
20秒前
李爱国应助再美采纳,获得10
20秒前
Snow发布了新的文献求助10
21秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3915798
求助须知:如何正确求助?哪些是违规求助? 3461411
关于积分的说明 10916658
捐赠科研通 3188227
什么是DOI,文献DOI怎么找? 1762507
邀请新用户注册赠送积分活动 852893
科研通“疑难数据库(出版商)”最低求助积分说明 793603