Data-Independent Acquisition: A Milestone and Prospect in Clinical Mass Spectrometry–Based Proteomics

蛋白质组学 数据科学 软件 标准化 领域(数学) 化学 计算机科学 生物化学 数学 基因 操作系统 程序设计语言 纯数学
作者
Klemens Fröhlich,Matthias Fahrner,Eva Brombacher,Adrianna Seredynska,Maximilian Maldacker,Clemens Kreutz,Alexander Schmidt,Oliver Schilling
出处
期刊:Molecular & Cellular Proteomics [Elsevier]
卷期号:23 (8): 100800-100800 被引量:62
标识
DOI:10.1016/j.mcpro.2024.100800
摘要

Data-independent acquisition (DIA) has revolutionized the field of mass spectrometry (MS)-based proteomics over the past few years. DIA stands out for its ability to systematically sample all peptides in a given m/z range, allowing an unbiased acquisition of proteomics data. This greatly mitigates the issue of missing values and significantly enhances quantitative accuracy, precision, and reproducibility compared to many traditional methods. This review focuses on the critical role of DIA analysis software tools, primarily focusing on their capabilities and the challenges they address in proteomic research. Advances in MS technology, such as trapped ion mobility spectrometry, or high field asymmetric waveform ion mobility spectrometry require sophisticated analysis software capable of handling the increased data complexity and exploiting the full potential of DIA. We identify and critically evaluate leading software tools in the DIA landscape, discussing their unique features, and the reliability of their quantitative and qualitative outputs. We present the biological and clinical relevance of DIA-MS and discuss crucial publications that paved the way for in-depth proteomic characterization in patient-derived specimens. Furthermore, we provide a perspective on emerging trends in clinical applications and present upcoming challenges including standardization and certification of MS-based acquisition strategies in molecular diagnostics. While we emphasize the need for continuous development of software tools to keep pace with evolving technologies, we advise researchers against uncritically accepting the results from DIA software tools. Each tool may have its own biases, and some may not be as sensitive or reliable as others. Our overarching recommendation for both researchers and clinicians is to employ multiple DIA analysis tools, utilizing orthogonal analysis approaches to enhance the robustness and reliability of their findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ambernameswu发布了新的文献求助10
1秒前
俏皮元珊发布了新的文献求助10
2秒前
CQ发布了新的文献求助10
3秒前
3秒前
456发布了新的文献求助10
4秒前
4秒前
4秒前
pyl关注了科研通微信公众号
4秒前
YDX完成签到,获得积分10
5秒前
123321完成签到,获得积分10
5秒前
小詹发布了新的文献求助10
6秒前
7秒前
顾矜应助chang000采纳,获得10
7秒前
烟花应助cherish采纳,获得10
7秒前
xiang完成签到,获得积分10
8秒前
悠悠完成签到 ,获得积分10
8秒前
9秒前
YDX发布了新的文献求助10
9秒前
本喵才不会喵呢完成签到,获得积分10
9秒前
ang完成签到,获得积分10
10秒前
hesu完成签到,获得积分20
10秒前
10秒前
Agoni完成签到,获得积分10
11秒前
充电宝应助falcon采纳,获得10
12秒前
聪慧航空完成签到,获得积分10
12秒前
星辰大海应助hesu采纳,获得10
13秒前
liky完成签到 ,获得积分10
14秒前
tulips发布了新的文献求助10
15秒前
顾矜应助456采纳,获得10
15秒前
称心曼安应助dulu采纳,获得10
15秒前
16秒前
晨阳落梦完成签到,获得积分10
16秒前
Ashun完成签到,获得积分10
16秒前
cherish完成签到,获得积分10
18秒前
所所应助CHSLN采纳,获得10
19秒前
20秒前
阳光的灵凡完成签到,获得积分10
20秒前
星星完成签到,获得积分10
21秒前
谭柠倩完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296872
求助须知:如何正确求助?哪些是违规求助? 4445936
关于积分的说明 13837692
捐赠科研通 4330953
什么是DOI,文献DOI怎么找? 2377367
邀请新用户注册赠送积分活动 1372651
关于科研通互助平台的介绍 1338148