清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The Differentiated Creative Search (DCS): Leveraging differentiated knowledge-acquisition and creative realism to address complex optimization problems

计算机科学 水准点(测量) 现实主义 新颖性 过程(计算) 适应(眼睛) 机器学习 知识管理 人工智能 人机交互 心理学 社会心理学 艺术 文学类 大地测量学 神经科学 地理 操作系统
作者
Poomin Duankhan,Khamron Sunat,Sirapat Chiewchanwattana,Patchara Nasa-Ngium
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:252: 123734-123734 被引量:19
标识
DOI:10.1016/j.eswa.2024.123734
摘要

This article introduces Differentiated Creative Search (DCS), a groundbreaking optimization algorithm that revolutionizes traditional decision-making systems in complex environments. Differing from conventional differential evolution methods, DCS integrates a unique knowledge-acquisition process with a creative realism paradigm, thereby transforming optimization strategies. The primary aim of DCS is to enhance decision-making efficacy by employing a newly proposed dual-strategy approach that balances divergent and convergent thinking within a team-based framework. High-performing members apply divergent thinking using the DCS/Xrand/Linnik(α,σ) strategy, which incorporates existing knowledge and Linnik flights. Conversely, the rest of the team harnesses convergent thinking through the DCS/Xbest/Current-to-2rand strategy, which combines insights from both the team leader and fellow members. This division of labor, coupled with a strategy tailored to the performance levels of team members, allows for a dynamic and effective decision-making process. The methodology of DCS involves iterative cycles of divergent and convergent thinking, supported by a differentiated knowledge-acquisition process and retrospective assessments. The algorithm's novelty lies in its differentiated knowledge-acquisition, adjusted based on individual team member performance, fostering an environment of continuous learning and adaptation. The paper's contributions are demonstrated through rigorous testing of DCS on various benchmark functions, including CEC2017, classical, and sensor selection problems, as well as real-world applications such as car side impact design, gear train design, and FM sound waves parameter estimation. The results showcase DCS's promising performance compared to existing algorithms, attributable to its innovative approach to problem-solving and decision-making in complex scenarios. The results and impact section highlights that DCS significantly outperforms traditional optimization algorithms, offering a robust and versatile tool for complex decision-making systems. Its impact is particularly notable in scenarios requiring a balance between innovative solutions and practical decision-making, making DCS a valuable asset in strategic planning and execution across various industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小二郎应助wwz采纳,获得30
5秒前
7秒前
完美世界应助adeno采纳,获得10
8秒前
SCINEXUS完成签到,获得积分0
9秒前
羽化成仙完成签到 ,获得积分10
9秒前
笨笨完成签到 ,获得积分10
23秒前
勤劳的颤完成签到 ,获得积分10
28秒前
SCI完成签到 ,获得积分10
59秒前
雪白小丸子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
TTDY完成签到 ,获得积分0
1分钟前
adeno发布了新的文献求助10
1分钟前
Gary完成签到 ,获得积分10
1分钟前
haralee完成签到 ,获得积分10
1分钟前
醉熏的千柳完成签到 ,获得积分10
1分钟前
1分钟前
wwz发布了新的文献求助30
1分钟前
yzhilson完成签到 ,获得积分10
2分钟前
枯叶蝶完成签到 ,获得积分10
2分钟前
kenchilie完成签到 ,获得积分10
2分钟前
lod完成签到,获得积分10
2分钟前
楚襄谷完成签到 ,获得积分10
2分钟前
暗示完成签到 ,获得积分10
2分钟前
xiaosui完成签到 ,获得积分10
2分钟前
2分钟前
彭于晏应助adeno采纳,获得10
2分钟前
麦冬粑粑发布了新的文献求助10
2分钟前
忆茶戏完成签到 ,获得积分10
2分钟前
宏伟发布了新的文献求助30
2分钟前
麦冬粑粑完成签到,获得积分10
2分钟前
任性翠安完成签到 ,获得积分10
2分钟前
陈小青完成签到 ,获得积分10
3分钟前
3分钟前
爆米花应助钱多多采纳,获得10
3分钟前
adeno完成签到,获得积分10
3分钟前
adeno发布了新的文献求助10
3分钟前
迈克老狼完成签到 ,获得积分10
3分钟前
顾矜应助聪明的心语采纳,获得10
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330070
关于积分的说明 10244288
捐赠科研通 3045435
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759541