The Differentiated Creative Search (DCS): Leveraging differentiated knowledge-acquisition and creative realism to address complex optimization problems

计算机科学 水准点(测量) 现实主义 新颖性 过程(计算) 适应(眼睛) 机器学习 知识管理 人工智能 人机交互 心理学 社会心理学 艺术 文学类 大地测量学 神经科学 地理 操作系统
作者
Poomin Duankhan,Khamron Sunat,Sirapat Chiewchanwattana,Patchara Nasa-Ngium
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:252: 123734-123734 被引量:72
标识
DOI:10.1016/j.eswa.2024.123734
摘要

This article introduces Differentiated Creative Search (DCS), a groundbreaking optimization algorithm that revolutionizes traditional decision-making systems in complex environments. Differing from conventional differential evolution methods, DCS integrates a unique knowledge-acquisition process with a creative realism paradigm, thereby transforming optimization strategies. The primary aim of DCS is to enhance decision-making efficacy by employing a newly proposed dual-strategy approach that balances divergent and convergent thinking within a team-based framework. High-performing members apply divergent thinking using the DCS/Xrand/Linnik(α,σ) strategy, which incorporates existing knowledge and Linnik flights. Conversely, the rest of the team harnesses convergent thinking through the DCS/Xbest/Current-to-2rand strategy, which combines insights from both the team leader and fellow members. This division of labor, coupled with a strategy tailored to the performance levels of team members, allows for a dynamic and effective decision-making process. The methodology of DCS involves iterative cycles of divergent and convergent thinking, supported by a differentiated knowledge-acquisition process and retrospective assessments. The algorithm's novelty lies in its differentiated knowledge-acquisition, adjusted based on individual team member performance, fostering an environment of continuous learning and adaptation. The paper's contributions are demonstrated through rigorous testing of DCS on various benchmark functions, including CEC2017, classical, and sensor selection problems, as well as real-world applications such as car side impact design, gear train design, and FM sound waves parameter estimation. The results showcase DCS's promising performance compared to existing algorithms, attributable to its innovative approach to problem-solving and decision-making in complex scenarios. The results and impact section highlights that DCS significantly outperforms traditional optimization algorithms, offering a robust and versatile tool for complex decision-making systems. Its impact is particularly notable in scenarios requiring a balance between innovative solutions and practical decision-making, making DCS a valuable asset in strategic planning and execution across various industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一颗杨梅发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
小透明发布了新的文献求助10
1秒前
大个应助chenille采纳,获得10
2秒前
茉莉花发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助50
6秒前
7秒前
cjmlslddjd完成签到,获得积分10
7秒前
14岁啦发布了新的文献求助10
7秒前
California发布了新的文献求助10
7秒前
ChemMa发布了新的文献求助10
8秒前
Criminology34应助ryt采纳,获得10
8秒前
renxu发布了新的文献求助10
8秒前
传奇3应助白小飞采纳,获得10
10秒前
阿油应助害羞鬼采纳,获得10
10秒前
淡定发布了新的文献求助10
12秒前
12秒前
13秒前
传奇3应助尊敬的雨竹采纳,获得10
14秒前
1777完成签到,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
天天快乐应助研友_nqv5WZ采纳,获得10
16秒前
123发布了新的文献求助10
17秒前
17秒前
19秒前
有人应助Jay枫采纳,获得10
19秒前
量子星尘发布了新的文献求助50
19秒前
李爱国应助白日梦想家采纳,获得10
19秒前
20秒前
21秒前
可以发布了新的文献求助10
21秒前
阳光向秋完成签到,获得积分10
21秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785553
求助须知:如何正确求助?哪些是违规求助? 5688705
关于积分的说明 15467891
捐赠科研通 4914643
什么是DOI,文献DOI怎么找? 2645317
邀请新用户注册赠送积分活动 1593098
关于科研通互助平台的介绍 1547432