The Differentiated Creative Search (DCS): Leveraging differentiated knowledge-acquisition and creative realism to address complex optimization problems

计算机科学 水准点(测量) 现实主义 新颖性 过程(计算) 适应(眼睛) 机器学习 知识管理 人工智能 人机交互 心理学 艺术 文学类 神经科学 操作系统 地理 社会心理学 大地测量学
作者
Poomin Duankhan,Khamron Sunat,Sirapat Chiewchanwattana,Patchara Nasa-Ngium
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:252: 123734-123734 被引量:19
标识
DOI:10.1016/j.eswa.2024.123734
摘要

This article introduces Differentiated Creative Search (DCS), a groundbreaking optimization algorithm that revolutionizes traditional decision-making systems in complex environments. Differing from conventional differential evolution methods, DCS integrates a unique knowledge-acquisition process with a creative realism paradigm, thereby transforming optimization strategies. The primary aim of DCS is to enhance decision-making efficacy by employing a newly proposed dual-strategy approach that balances divergent and convergent thinking within a team-based framework. High-performing members apply divergent thinking using the DCS/Xrand/Linnik(α,σ) strategy, which incorporates existing knowledge and Linnik flights. Conversely, the rest of the team harnesses convergent thinking through the DCS/Xbest/Current-to-2rand strategy, which combines insights from both the team leader and fellow members. This division of labor, coupled with a strategy tailored to the performance levels of team members, allows for a dynamic and effective decision-making process. The methodology of DCS involves iterative cycles of divergent and convergent thinking, supported by a differentiated knowledge-acquisition process and retrospective assessments. The algorithm's novelty lies in its differentiated knowledge-acquisition, adjusted based on individual team member performance, fostering an environment of continuous learning and adaptation. The paper's contributions are demonstrated through rigorous testing of DCS on various benchmark functions, including CEC2017, classical, and sensor selection problems, as well as real-world applications such as car side impact design, gear train design, and FM sound waves parameter estimation. The results showcase DCS's promising performance compared to existing algorithms, attributable to its innovative approach to problem-solving and decision-making in complex scenarios. The results and impact section highlights that DCS significantly outperforms traditional optimization algorithms, offering a robust and versatile tool for complex decision-making systems. Its impact is particularly notable in scenarios requiring a balance between innovative solutions and practical decision-making, making DCS a valuable asset in strategic planning and execution across various industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得30
刚刚
在水一方应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
核桃应助科研通管家采纳,获得30
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
DijiaXu应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
punta完成签到,获得积分10
1秒前
cd完成签到 ,获得积分10
2秒前
mlzmlz完成签到,获得积分0
2秒前
万能图书馆应助不一样采纳,获得10
5秒前
大宝慧发布了新的文献求助10
5秒前
Coolkid2001完成签到,获得积分10
5秒前
腼腆的冰安完成签到 ,获得积分10
6秒前
8秒前
成就若颜完成签到,获得积分10
8秒前
xxywmt发布了新的文献求助20
8秒前
科研通AI5应助刁刁采纳,获得10
10秒前
打打应助Spaz采纳,获得10
10秒前
10秒前
褚沧海完成签到 ,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
renyi关注了科研通微信公众号
13秒前
13秒前
科研通AI6应助Ameliaykh采纳,获得10
15秒前
木木木发布了新的文献求助10
16秒前
Jeri完成签到 ,获得积分10
16秒前
kylin完成签到,获得积分10
17秒前
18秒前
18秒前
20秒前
123完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4699399
求助须知:如何正确求助?哪些是违规求助? 4068178
关于积分的说明 12577605
捐赠科研通 3767840
什么是DOI,文献DOI怎么找? 2080931
邀请新用户注册赠送积分活动 1108811
科研通“疑难数据库(出版商)”最低求助积分说明 987057