CLIP-Guided Federated Learning on Heterogeneity and Long-Tailed Data

计算机科学 数据科学
作者
Jiangming Shi,Shanshan Zheng,Xiangbo Yin,Lu Yang,Yuan Xie,Yanyun Qu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (13): 14955-14963 被引量:7
标识
DOI:10.1609/aaai.v38i13.29416
摘要

Federated learning (FL) provides a decentralized machine learning paradigm where a server collaborates with a group of clients to learn a global model without accessing the clients' data. User heterogeneity is a significant challenge for FL, which together with the class-distribution imbalance further enhances the difficulty of FL. Great progress has been made in large vision-language models, such as Contrastive Language-Image Pre-training (CLIP), which paves a new way for image classification and object recognition. Inspired by the success of CLIP on few-shot and zero-shot learning, we use CLIP to optimize the federated learning between server and client models under its vision-language supervision. It is promising to mitigate the user heterogeneity and class-distribution balance due to the powerful cross-modality representation and rich open-vocabulary prior knowledge. In this paper, we propose the CLIP-guided FL (CLIP2FL) method on heterogeneous and long-tailed data. In CLIP2FL, the knowledge of the off-the-shelf CLIP model is transferred to the client-server models, and a bridge is built between the client and server. Specifically, for client-side learning, knowledge distillation is conducted between client models and CLIP to improve the ability of client-side feature representation. For server-side learning, in order to mitigate the heterogeneity and class-distribution imbalance, we generate federated features to retrain the server model. A prototype contrastive learning with the supervision of the text encoder of CLIP is introduced to generate federated features depending on the client-side gradients, and they are used to retrain a balanced server classifier. Extensive experimental results on several benchmarks demonstrate that CLIP2FL achieves impressive performance and effectively deals with data heterogeneity and long-tail distribution. The code is available at https://github.com/shijiangming1/CLIP2FL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
落星发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
007完成签到,获得积分10
5秒前
不易发布了新的文献求助10
5秒前
吐司发布了新的文献求助10
8秒前
9秒前
了该发布了新的文献求助10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得30
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
冰魂应助科研通管家采纳,获得20
10秒前
科研通AI5应助科研通管家采纳,获得30
10秒前
yydragen应助科研通管家采纳,获得30
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
10秒前
禾七完成签到,获得积分10
13秒前
15秒前
学木发布了新的文献求助10
15秒前
落星完成签到,获得积分10
15秒前
19秒前
miemie66发布了新的文献求助10
19秒前
脑洞疼应助学木采纳,获得10
20秒前
24秒前
Zayne应助stt1011采纳,获得10
24秒前
豆丁完成签到,获得积分10
25秒前
Cherish应助机智谷蕊采纳,获得10
27秒前
打打应助友好新柔采纳,获得10
28秒前
落星完成签到,获得积分10
29秒前
30秒前
Hello应助张芙瑶采纳,获得10
35秒前
dyuephy完成签到,获得积分10
36秒前
BINGBING发布了新的文献求助10
36秒前
zonghonghan完成签到 ,获得积分10
36秒前
科研通AI5应助吐司采纳,获得10
40秒前
42秒前
科研通AI5应助hyl采纳,获得10
43秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844610
求助须知:如何正确求助?哪些是违规求助? 3387017
关于积分的说明 10547192
捐赠科研通 3107611
什么是DOI,文献DOI怎么找? 1711877
邀请新用户注册赠送积分活动 824223
科研通“疑难数据库(出版商)”最低求助积分说明 774638