脑电图
聚类分析
计算机科学
空格(标点符号)
人工智能
主题(文档)
模式识别(心理学)
心理学
神经科学
图书馆学
操作系统
作者
Khanh Ha Nguyen,Yvonne Tran,Ashley Craig,Hung T. Nguyen,Rifai Chai
标识
DOI:10.1088/1741-2552/ad8b6d
摘要
While Electroencephalography (EEG)-based driver fatigue state classification models have demonstrated effectiveness, their real-world application remains uncertain. The substantial variability in EEG signals among individuals poses a challenge in developing a universal model, often necessitating retraining with the introduction of new subjects. However, obtaining sufficient data for retraining, especially fatigue data for new subjects, is impractical in real-world settings.
科研通智能强力驱动
Strongly Powered by AbleSci AI