Two-Stage Dynamic Fusion Framework for Multimodal Classification Tasks

计算机科学 融合 阶段(地层学) 人工智能 机器学习 数据挖掘 语言学 生物 哲学 古生物学
作者
Shoumeng Ge,Ying Chen
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0448
摘要

Multimodal learning has provided an opportunity to better analyze a system or phenomenon. Numerous classification studies have developed advanced dynamic fusion methods to fuse information from different modalities. However, few works have considered a reliable design of dynamic fusion methods based on theoretical insights. In this context, we address the research gaps as follows. From a theoretical perspective, we initially establish the performance range for the accuracy of a multimodal classifier. Subsequently, we derive a condition based on the upper limit of the range to indicate how to improve the accuracy of the model. From a technical perspective, we propose a two-stage dynamic fusion framework according to this condition. In the first stage, we design an uncertainty-aware dynamic fusion method. In the second stage, we propose a regression-based method to adaptively generate the learned fusion weight for each modality. In the experiment, we use seven existing models for comparisons and exploit four public data sets to examine the effectiveness of the two-stage framework. The results indicate that our proposed framework generally outperforms existing methods in terms of accuracy and robustness. Additionally, we conduct a comprehensive discussion from several aspects to further illustrate the merits of the proposed framework. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This study was supported by the China National Key R&D Program [Grant 2022YFB3305500], the National Natural Science Foundation of China [Grants 72121001, 72101066, and 72131005], the Heilongjiang Natural Science Excellent Youth Fund [Grant YQ2022G004], and the Key Research and Development Projects of Heilongjiang Province [Grant JD22A003]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0448 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0448 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助50
刚刚
华仔应助叶y采纳,获得10
2秒前
3秒前
醉熏的幻灵完成签到 ,获得积分10
3秒前
dd发布了新的文献求助10
3秒前
顾矜应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
科研女仆完成签到 ,获得积分10
5秒前
虚幻采枫完成签到,获得积分10
5秒前
Yohi完成签到 ,获得积分10
6秒前
0x3f完成签到 ,获得积分10
7秒前
江城闲鹤发布了新的文献求助10
7秒前
Tree_QD完成签到 ,获得积分10
8秒前
苏雅霏完成签到 ,获得积分10
9秒前
JUAN发布了新的文献求助10
9秒前
活泼学生完成签到 ,获得积分10
10秒前
engel58完成签到,获得积分10
12秒前
乐乐应助航行天下采纳,获得10
12秒前
科研通AI6应助江城闲鹤采纳,获得10
15秒前
Gwen完成签到,获得积分10
18秒前
18秒前
roger完成签到 ,获得积分10
19秒前
花卷完成签到,获得积分10
21秒前
老福贵儿应助dd采纳,获得10
22秒前
小v完成签到 ,获得积分10
23秒前
樊家圣发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
yy发布了新的文献求助20
28秒前
34秒前
yan完成签到 ,获得积分10
36秒前
迷路凌柏完成签到 ,获得积分10
36秒前
minino完成签到 ,获得积分0
36秒前
航行天下发布了新的文献求助10
40秒前
虞无声完成签到,获得积分10
40秒前
杨美琪发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044603
求助须知:如何正确求助?哪些是违规求助? 4274186
关于积分的说明 13323344
捐赠科研通 4087837
什么是DOI,文献DOI怎么找? 2236545
邀请新用户注册赠送积分活动 1243935
关于科研通互助平台的介绍 1171966