A Machine Vision-based Dimension Measurement Method of Shaft Parts with Sub-pixel Edge

GSM演进的增强数据速率 维数(图论) 像素 计算机视觉 机器视觉 计算机科学 人工智能 光学 物理 数学 纯数学
作者
Wei Cheng,Feng Gao,Yan Li,Hang Zhang,Wenqiang Li,Kejun Wu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adcc47
摘要

Abstract The evolution of the automotive industry demands gearboxes that offer improved specifications in terms of power transfer and shifting performance. The high-quality standards required for transmission component manufacturing processes render it necessary to measure shaft parts. To realize online diameter inspection of shaft parts in the gearbox production line, a machine vision-based non-contact metrology method with Canny-Steger subpixel edge detection is proposed. The interference background was separated from the measured target using ROI technology. Morphological closure operations and bilateral filtering preprocessing were performed on the collected images to achieve filtering and denoising, respectively. With the extraction of pixel-level edges using the Canny operator as a basis, the Steger algorithm was used to detect the subpixel edges. The edges and normal directions are derived from the Hessian matrix. Subsequently, Taylor polynomials are applied to the pixel grayscale in the normal direction to obtain the grayscale distribution function, the extreme values of which are solved to obtain the subpixel edge point positions. The fitting data are employed to evaluate the machining errors of the parts, significantly reducing redundant calculations in the Steger algorithm process and improving the detection speed. The proposed method was validated through synthetic and real experiments. Experimental results demonstrate that the measurement method proposed in this paper can rapidly measure shaft parts. Its diameter measurement accuracy can reach 3μm, and the repetitive measurement accuracy can reach 2μm. Compared with pixel-level edge detection, the accuracy has been improved by 60%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
syangZ完成签到,获得积分10
1秒前
李健的小迷弟应助陈chen采纳,获得10
2秒前
能按时毕业的FLY完成签到 ,获得积分10
2秒前
2秒前
hanzhipad应助小葵采纳,获得20
2秒前
hhhh完成签到,获得积分10
3秒前
领导范儿应助樊宗现采纳,获得10
3秒前
Ava应助殷勤的汲采纳,获得10
4秒前
Lucas应助lan采纳,获得10
4秒前
狂野白梅完成签到,获得积分10
4秒前
圣人海发布了新的文献求助10
4秒前
传奇3应助夜夜夜采纳,获得10
5秒前
猪肉铺发布了新的文献求助10
5秒前
xkhxh完成签到 ,获得积分10
6秒前
7秒前
搜第一完成签到,获得积分10
7秒前
huke发布了新的文献求助10
7秒前
虎虎生威完成签到,获得积分20
7秒前
furoeilong发布了新的文献求助10
8秒前
Jasper应助dianhuaxue采纳,获得10
8秒前
orange完成签到,获得积分10
8秒前
8秒前
大模型应助鸭梨很大采纳,获得10
9秒前
Owen应助刘吉瀚采纳,获得10
9秒前
Zwc完成签到,获得积分10
9秒前
9秒前
CLH完成签到,获得积分20
9秒前
9秒前
细心觅风完成签到,获得积分10
10秒前
小熊完成签到,获得积分10
10秒前
aa发布了新的文献求助10
11秒前
科研通AI5应助林建峰采纳,获得10
11秒前
动漫大师发布了新的文献求助10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
Zyk完成签到,获得积分10
11秒前
iNk应助科研通管家采纳,获得10
11秒前
浮一大白完成签到,获得积分10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Diagnostic Pathology: Kidney Diseases 200
Advanced Micropipette Techniques for Cell Physiology 200
Encyclopedia of Ocean Sciences Third Edition 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827705
求助须知:如何正确求助?哪些是违规求助? 3369930
关于积分的说明 10459808
捐赠科研通 3089768
什么是DOI,文献DOI怎么找? 1700053
邀请新用户注册赠送积分活动 817656
科研通“疑难数据库(出版商)”最低求助积分说明 770318