Revisiting stress–strain behavior and mechanical reinforcement of polymer nanocomposites from molecular dynamics simulations

钢筋 分子动力学 纳米复合材料 材料科学 动力学(音乐) 应力-应变曲线 聚合物纳米复合材料 压力(语言学) 聚合物 拉伤 复合材料 变形(气象学) 化学 计算化学 物理 哲学 内科学 医学 语言学 声学
作者
Jianxiang Shen,Xiangsong Lin,Jun Liu,Xue Li
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
卷期号:22 (29): 16760-16771 被引量:22
标识
DOI:10.1039/d0cp02225j
摘要

Through coarse-grained molecular dynamics simulations, the effects of nanoparticle properties, polymer-nanoparticle interactions, chain crosslinks and temperature on the stress-strain behavior and mechanical reinforcement of polymer nanocomposites (PNCs) are comprehensively investigated. By regulating the filler-polymer interaction (miscibility) in a wide range, an optimal dispersion state of nanoparticles is found at moderate interaction strength, while the mechanical properties of PNCs are improved monotonically with the increase of the particle-polymer interaction due to the tele-bridge structures of nanoparticles via polymer chains. Although smaller-sized fillers more easily build interconnected structures, the elastic moduli of PNCs at the percolation threshold concentration where a three-dimensional filler network forms are almost independent of nanoparticle size. Compared with spherical nanoparticles, anisotropic rod-like ones, especially with larger aspect ratio and rod stiffness, contribute exceptional reinforcement towards polymer materials. In addition, the elastic modulus with the strain, derived from the stress-strain curve, shows an analogous nonlinear behavior to the amplitude-dependence of the storage modulus (Payne effect). Such a behavior originates essentially from the failure/breakup of the microstructures contributing to the mechanical reinforcement, such as bound polymer layers around nanoparticles or nanoparticle networking structures. The Young's modulus as a function of the nanoparticle volume fraction greatly exceeds that predicted by the Einstein-Smallwood model and Guth-Gold model, which arises primarily from the contribution of the local/global filler network. The temperature dependence of the Young's modulus is further examined by mode coupling theory (MCT) and the Vogel-Fulcher-Tammann (VFT) equation, and the results indicate that the time-temperature superposition principle holds modestly above the critical temperature on the short-time (small-length) scale of elastic response. This work is expected to provide some guidance on controlling and improving the mechanical properties and nonlinear behavior of PNCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助shuangcheng采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
刚刚
yufanhui应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
刚刚
SciGPT应助科研通管家采纳,获得10
1秒前
yufanhui应助科研通管家采纳,获得10
1秒前
ddd完成签到 ,获得积分10
1秒前
Akashi完成签到 ,获得积分10
1秒前
大家好完成签到 ,获得积分10
3秒前
芝麻糊了发布了新的文献求助10
4秒前
云过半山完成签到,获得积分10
4秒前
大方海安完成签到,获得积分10
4秒前
Cheng完成签到 ,获得积分10
4秒前
LI完成签到 ,获得积分10
7秒前
一只东北鸟完成签到 ,获得积分10
8秒前
8秒前
8秒前
ww完成签到,获得积分10
8秒前
半生完成签到 ,获得积分10
9秒前
勤恳的红酒完成签到,获得积分10
9秒前
next完成签到,获得积分10
10秒前
聪明乐巧完成签到,获得积分10
11秒前
GB完成签到 ,获得积分10
11秒前
惊蛰时分听春雷完成签到,获得积分10
11秒前
shuangcheng发布了新的文献求助10
11秒前
加油完成签到,获得积分10
11秒前
选课完成签到,获得积分10
12秒前
xukaixuan001完成签到,获得积分10
13秒前
二二完成签到 ,获得积分10
13秒前
Inter09完成签到,获得积分10
13秒前
芝麻糊了完成签到,获得积分10
13秒前
科研通AI2S应助joker采纳,获得10
14秒前
liu完成签到,获得积分10
15秒前
dh完成签到,获得积分10
15秒前
有距离发布了新的社区帖子
15秒前
harmy完成签到,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795709
求助须知:如何正确求助?哪些是违规求助? 3340749
关于积分的说明 10301635
捐赠科研通 3057268
什么是DOI,文献DOI怎么找? 1677625
邀请新用户注册赠送积分活动 805503
科研通“疑难数据库(出版商)”最低求助积分说明 762642