Sensitivity and specificity of a facial emotion recognition test in classifying patients with schizophrenia

判别式 概化理论 接收机工作特性 精神分裂症(面向对象编程) 精神分裂症的诊断 曲线下面积 听力学 精神科 医学 心理学 精神病 临床心理学 内科学 机器学习 发展心理学 计算机科学
作者
Shih‐Chieh Lee,Chen-Chung Liu,Cheng‐Deng Kuo,I-Ping Hsueh,Ching-Lin Hsieh
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:275: 224-229 被引量:9
标识
DOI:10.1016/j.jad.2020.07.003
摘要

Schizophrenia is a debilitating mental illness that causes significant disability. However, the lack of evidence for functional decline yields difficulty in distinguishing patients with schizophrenia from healthy adults. Since patients with schizophrenia demonstrate severe facial emotion recognition deficit (FERD), FERD measurement appears to be a promising solution for the aforementioned challenge.We aimed to develop a FERD-based screening tool to differentiates patients with schizophrenia from healthy adults. Patients' responses were extracted from a previous study. The most discriminative index was determined by comparing the area under the receiver operating characteristic curve (AUC) of patients’ FER scores in 7 domains individually and collectively. The best cut-off score was selected only for the most discriminative index to provide both high sensitivity and specificity (≥ 0.90). The “number of domains failed” showed the highest discriminative value (AUC = 0.92). Since high sensitivity and specificity could not be achieved simultaneously, two sub-optimal cut-off scores were recommended for prospective users. For users prioritizing sensitivity, the “≥ 2 domains failed” index yields high sensitivity (0.96) with modest specificity (0.66). For users targeting specificity, the “≥ 4 domains failed” indexachieves high specificity (0.92) with acceptable sensitivity (0.72). Convenience sampling with mild clinical severity and younger healthy adults (< 20 years old) may limit the generalizability. The FERD screener seems to be a discriminative tool with changeable cut-off scores achieving high sensitivity or specificity. Therefore, it may be useful in detecting patients and ruling out adults erroneously suspected of having schizophrenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助梁晓玲采纳,获得30
1秒前
英俊的铭应助jelly采纳,获得10
2秒前
搜集达人应助慧慧采纳,获得10
5秒前
拔刀斩落樱完成签到,获得积分10
6秒前
三石完成签到 ,获得积分10
7秒前
123456完成签到,获得积分0
7秒前
Atoxus发布了新的文献求助200
8秒前
8秒前
碧蓝的刚完成签到,获得积分10
10秒前
打打应助科研通管家采纳,获得10
11秒前
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
12秒前
13秒前
幸福的向彤完成签到,获得积分10
15秒前
小小业发布了新的文献求助10
17秒前
18秒前
雪白鸿涛完成签到,获得积分10
19秒前
辰月贰拾发布了新的文献求助10
23秒前
晴空万里完成签到,获得积分10
23秒前
内向绿竹完成签到,获得积分20
25秒前
小小业完成签到,获得积分10
26秒前
李爱国应助cometx采纳,获得10
29秒前
洁净百川完成签到 ,获得积分10
30秒前
科研通AI5应助Kate采纳,获得10
30秒前
31秒前
权千万发布了新的文献求助10
32秒前
chaser完成签到,获得积分10
33秒前
34秒前
哪吒二发布了新的文献求助10
34秒前
听风轻语发布了新的文献求助10
36秒前
aaaa完成签到,获得积分10
38秒前
辰月贰拾完成签到,获得积分10
38秒前
BMK发布了新的文献求助20
39秒前
turbohero完成签到,获得积分10
42秒前
淡淡的白羊完成签到 ,获得积分10
43秒前
hy1234完成签到 ,获得积分10
45秒前
xxxxx关注了科研通微信公众号
48秒前
syr完成签到 ,获得积分0
49秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785864
求助须知:如何正确求助?哪些是违规求助? 3331212
关于积分的说明 10250565
捐赠科研通 3046660
什么是DOI,文献DOI怎么找? 1672149
邀请新用户注册赠送积分活动 801039
科研通“疑难数据库(出版商)”最低求助积分说明 759979