材料科学
环氧树脂
磷腈
固化(化学)
极限氧指数
可燃性
热固性聚合物
差示扫描量热法
热稳定性
阻燃剂
烧焦
玻璃化转变
高分子化学
傅里叶变换红外光谱
热重分析
复合材料
聚合物
化学工程
热解
工程类
物理
热力学
作者
Jian Sun,Xiaodong Wang,Dezhen Wu
摘要
A novel halogen-free fire resistant epoxy resin with pendent spiro-cyclotriphosphazene groups was designed and synthesized via a three-step synthetic pathway. The chemical structures and compositions of spiro-cyclotriphosphazene precursors and final product were confirmed by (1)H, (13)C, and (31)P NMR spectroscopy, mass spectroscopy, elemental analysis, and Fourier transform infrared spectroscopy. The thermal curing behaviors of the synthesized epoxy resin with 4,4'-diamino-diphenylmethane, 4,4'-diamino-diphenyl sulfone, and novolac as hardeners were investigated by differential scanning calorimetry (DSC), and the curing kinetics were also studied under a nonisothermal condition. The evaluation of the thermal properties demonstrated that these thermosets achieved a good thermal resistance due to their high glass transition temperatures more than 150 °C, and also gained high thermal stabilities with high char yields. The flammability characteristics of the spirocyclic phosphazene-based epoxy thermosets cured with these three hardeners were investigated on the basis of the results obtained from the limiting oxygen index (LOI) and UL-94 vertical burning experiments as well as the analysis of the residual chars collected from the vertical burning tests. The high LOI values and UL-94 V-0 classification of these epoxy thermosets indicated that the incorporation of phosphazene rings into the backbone chain imparts nonflammability to the epoxy resin owing to the unique combination of phosphorus and nitrogen following by a synergistic effect on flame retardancy. The epoxy resin obtained in this study is a green functional polymer and will become a potential candidate for fire- and heat-resistant applications in electronic and microelectronic fields with more safety and excellent performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI