Flavour network-based analysis of food pairing: Application to the recipes of the sub-cuisines from Northeast India

配对 味道 成分 食品科学 数学 配方 计算机科学 化学 物理 超导电性 量子力学
作者
Makinei L.V,M.K. Hazarika
出处
期刊:Current research in food science [Elsevier]
卷期号:5: 1038-1046
标识
DOI:10.1016/j.crfs.2022.05.015
摘要

The flavour network-based analysis of food pairing was applied to the sub-cuisines from Northeast India to examine the food pairing behaviour in terms of the co-occurrence of ingredients with the shared flavouring compounds in food recipes. The method applied was based on an existing procedure in computational gastronomy, wherein the preference for positive pairing is attributed to dairy-based ingredients and negative pairing behaviour is attributed primarily to spice based ingredients. Recipe data was subjected to backbone extraction, projection of the recipe-ingredient-compound tri-partite network, and analysis for prevalence and authenticity of ingredients. Further, the average flavour sharing index of the cuisine was determined with the help of the flavour profiles of the ingredients. The extent of deviation for the original cuisine in comparison to a random cuisine was used to determine the degree of bias in the food pairing behaviour, with the sign as the indicator of the nature of pairing. The analysis identified the ingredients responsible to exhibit a positive or negative pairing pattern in the sub-cuisines. The ingredients from the spice category were the most prevalent and have resulted in the negative pairing behaviour in the cuisines. This role of spices in effecting a negative pairing behaviour is in line with the earlier reports for other Indian regional cuisines. • Network theory was applied to explore the flavour pairing behaviour in recipes from Northeast regional sub-cuisines. • Cooking oil and ingredients from the spice category were the prevalent ingredients. • Prevalence of spices have led to negative food pairing patterns in most of the regional sub-cuisines. • Limited usage of dairy ingredients is also a reason for the non - positive food pairing behaviors in the sub-cuisines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猕猴桃完成签到,获得积分10
刚刚
anna完成签到,获得积分10
2秒前
rui发布了新的文献求助10
2秒前
3秒前
华仔应助Liang采纳,获得10
3秒前
ZHANG发布了新的文献求助30
3秒前
科研通AI6应助djbj2022采纳,获得10
4秒前
肉乎包完成签到,获得积分10
4秒前
911发布了新的文献求助10
5秒前
无花果应助dxm采纳,获得10
5秒前
长情笑柳发布了新的文献求助10
5秒前
ZHH发布了新的文献求助10
6秒前
7秒前
学术小白发布了新的文献求助10
9秒前
9秒前
喜洋洋完成签到 ,获得积分10
9秒前
yufancy02完成签到,获得积分10
10秒前
不错吧完成签到,获得积分10
11秒前
cizy不爱科研了完成签到,获得积分10
11秒前
12秒前
12秒前
麻花完成签到,获得积分10
13秒前
15秒前
Liang发布了新的文献求助10
15秒前
SHANN2001完成签到,获得积分20
15秒前
闪闪的梦山关注了科研通微信公众号
16秒前
wang完成签到,获得积分10
16秒前
斐然诗发布了新的文献求助10
16秒前
16秒前
彩色青亦发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
RockRedfoo完成签到 ,获得积分10
18秒前
科研通AI6应助田家溢采纳,获得10
18秒前
20秒前
20秒前
在水一方应助April采纳,获得10
20秒前
岳阳张震岳完成签到,获得积分10
20秒前
wang发布了新的文献求助10
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342918
求助须知:如何正确求助?哪些是违规求助? 4478608
关于积分的说明 13940254
捐赠科研通 4375531
什么是DOI,文献DOI怎么找? 2404114
邀请新用户注册赠送积分活动 1396625
关于科研通互助平台的介绍 1368965