SCDNET: A novel convolutional network for semantic change detection in high resolution optical remote sensing imagery

Softmax函数 计算机科学 特征(语言学) 比例(比率) 遥感 语义特征 编码器 人工智能 卷积(计算机科学) 卷积神经网络 变更检测 模式识别(心理学) 数据挖掘 地理 地图学 人工神经网络 语言学 哲学 操作系统
作者
Daifeng Peng,Lorenzo Bruzzone,Yongjun Zhang,Haiyan Guan,Pengfei He
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:103: 102465-102465 被引量:117
标识
DOI:10.1016/j.jag.2021.102465
摘要

With the continuing improvement of remote-sensing (RS) sensors, it is crucial to monitor Earth surface changes at fine scale and in great detail.Thus, semantic change detection (SCD), which is capable of locating and identifying "from-to" change information simultaneously, is gaining growing attention in RS community.However, due to the limitation of large-scale SCD datasets, most existing SCD methods are focused on scene-level changes, where semantic change maps are generated with only coarse boundary or scarce category information.To address this issue, we propose a novel convolutional network for large-scale SCD (SCDNet).It is based on a Siamese UNet architecture, which consists of two encoders and two decoders with shared weights.First, multi-temporal images are given as input to the encoders to extract multi-scale deep representations.A multi-scale atrous convolution (MAC) unit is inserted at the end of the encoders to enlarge the receptive field as well as capturing multi-scale information.Then, difference feature maps are generated for each scale, which are combined with feature maps from the encoders to serve as inputs for the decoders.Attention mechanism and deep supervision strategy are further introduced to improve network performance.Finally, we utilize softmax layer to produce a semantic change map for each time image.Extensive experiments are carried out on two large-scale high-resolution SCD datasets, which demonstrates the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助SLYXY采纳,获得10
刚刚
DJX完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
2秒前
2秒前
4秒前
6秒前
7秒前
pluto应助David采纳,获得10
8秒前
科研通AI6.1应助木木三采纳,获得10
9秒前
元谷雪发布了新的文献求助10
9秒前
乐乐应助皮在痒采纳,获得10
9秒前
希望天下0贩的0应助xiaoyu采纳,获得10
9秒前
小马甲应助tier3采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
科研通AI2S应助jackdawjo采纳,获得10
12秒前
桐桐应助Reni采纳,获得10
12秒前
13秒前
14秒前
SLYXY发布了新的文献求助10
14秒前
15秒前
mukji完成签到,获得积分10
15秒前
鄂海菡完成签到,获得积分0
16秒前
开朗无施发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
潇洒从彤完成签到,获得积分10
17秒前
东城区吴彦祖完成签到,获得积分10
18秒前
思源应助CBWKEYANTONG123采纳,获得10
18秒前
19秒前
19秒前
lulu发布了新的文献求助10
20秒前
20秒前
21秒前
Aurinse完成签到,获得积分10
22秒前
嗯哼完成签到,获得积分10
22秒前
22秒前
学不通完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761057
求助须知:如何正确求助?哪些是违规求助? 5527282
关于积分的说明 15398807
捐赠科研通 4897632
什么是DOI,文献DOI怎么找? 2634274
邀请新用户注册赠送积分活动 1582397
关于科研通互助平台的介绍 1537744