上升流
海风
气候学
环境科学
日循环
海底管道
大气不稳定性
海洋学
大气科学
风速
地质学
作者
Rui Shi,Qinbo Cai,Lingyu Dong,Xinyu Guo,Dongxiao Wang
摘要
Abstract The modulation of coastal rainfall at Hainan by large‐scale circulation and coastal upwelling is studied using observations and numerical modeling. Tropical Rainfall Measuring Mission data show that the monthly mean rainfall off southern Hainan was considerably higher in August 2010 than in August 2011. The main cause of this difference is an intensification of offshore rainfall from midnight to early morning. Compared with the multiyear (2000–2017) average field, reanalysis data show that there is an apparent increase in atmospheric humidity in August 2010. During this time, a moderate El Niño was decaying and a new La Niña event was developing, so a significant adjustment of the large‐scale circulation was observed in the western Pacific. The resulting anomalous onshore wind depresses the development of upwelling, leading to a relatively warm sea surface temperature off the south coast of Hainan, which in turn enhances the land‐sea thermal contrast and land breeze at night. Decreases in upwelling intensity and asymmetric intensification of nocturnal and daytime offshore rainfall are confirmed not only in the summer of 2010 but also in the summer of 2003. Numerical simulations using the Weather Research and Forecasting model verify that the enhanced land breeze ultimately leads to pronounced coastal rainfall off southern Hainan at night. The results indicate that localized surface convergence associated with the sea and land breezes may be more important than the atmospheric humidity and convective instability in modulating the diurnal cycle of rainfall for tropical islands.
科研通智能强力驱动
Strongly Powered by AbleSci AI