De novo design of protein structure and function with RFdiffusion

蛋白质设计 计算机科学 蛋白质工程 蛋白质结构 深度学习 结构母题 生成设计 人工智能 化学 材料科学 生物化学 相容性(地球化学) 复合材料
作者
Joseph L. Watson,David Juergens,Nathaniel R. Bennett,Brian L. Trippe,Jason Yim,Helen E. Eisenach,Woody Ahern,Andrew J. Borst,Robert J. Ragotte,Lukas F. Milles,Basile I. M. Wicky,Nikita Hanikel,Samuel J. Pellock,Alexis Courbet,William Sheffler,Jue Wang,Preetham Venkatesh,Isaac Sappington,Susana Vázquez Torres,Anna Lauko
出处
期刊:Nature [Nature Portfolio]
卷期号:620 (7976): 1089-1100 被引量:698
标识
DOI:10.1038/s41586-023-06415-8
摘要

Abstract There has been considerable recent progress in designing new proteins using deep-learning methods 1–9 . Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models 10,11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence–structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1117完成签到 ,获得积分10
刚刚
1秒前
w32完成签到,获得积分10
5秒前
6秒前
啊怪完成签到 ,获得积分10
7秒前
10秒前
明眸完成签到 ,获得积分10
10秒前
6633发布了新的文献求助10
11秒前
ATYS完成签到,获得积分10
13秒前
14秒前
jenningseastera应助阿枫采纳,获得30
16秒前
张牧之完成签到 ,获得积分10
17秒前
panpan完成签到 ,获得积分10
20秒前
苦行僧发布了新的文献求助50
21秒前
布可完成签到,获得积分10
22秒前
ES完成签到 ,获得积分0
25秒前
Bryce完成签到 ,获得积分10
26秒前
26秒前
27秒前
幽默的友灵完成签到,获得积分10
27秒前
28秒前
28秒前
bk201完成签到 ,获得积分10
28秒前
songf11完成签到,获得积分10
29秒前
31秒前
Freya发布了新的文献求助10
32秒前
曹国庆完成签到 ,获得积分10
32秒前
34秒前
36秒前
36秒前
37秒前
深情安青应助abc采纳,获得10
38秒前
carl发布了新的文献求助30
40秒前
小马甲应助6633采纳,获得10
40秒前
40秒前
NexusExplorer应助DIDIDI采纳,获得10
40秒前
41秒前
41秒前
guan完成签到,获得积分20
43秒前
学生白发布了新的文献求助10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326623
关于积分的说明 10227813
捐赠科研通 3041744
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751