Physics-Informed Machine Learning for Data Anomaly Detection, Classification, Localization, and Mitigation: A Review, Challenges, and Path Forward

异常检测 计算机科学 路径(计算) 异常(物理) 人工智能 机器学习 数据挖掘 物理 凝聚态物理 程序设计语言
作者
Mehdi Jabbari Zideh,Paroma Chatterjee,Anurag K. Srivastava
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 4597-4617 被引量:26
标识
DOI:10.1109/access.2023.3347989
摘要

Advancements in digital automation for smart grids have led to the installation of measurement devices like phasor measurement units (PMUs), micro-PMUs (μ-PMUs), and smart meters. However, large amount of data collected by these devices bring several challenges as control room operators need to use this data with models to make confident decisions for reliable and resilient operation of the cyber-power systems. Machine-learning (ML) based tools can provide a reliable interpretation of the deluge of data obtained from the field. For the decision-makers to ensure reliable network operation under all operating conditions, these tools need to identify solutions that are feasible and satisfy the system constraints, while being efficient, trustworthy and interpretable. This resulted in the increasing popularity of physics-informed machine learning (PIML) approaches, as these methods overcome challenges that model-based or data-driven ML methods face in silos. This work aims at the following: a) review existing strategies and techniques for incorporating underlying physical principles of the power grid into different types of ML approaches (supervised/semi-supervised learning, unsupervised learning, and reinforcement learning (RL)); b) explore the existing works on PIML methods for anomaly detection, classification, localization, and mitigation in power transmission and distribution systems, c) discuss improvements in existing methods through consideration of potential challenges while also addressing the limitations to make them suitable for real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxxx完成签到,获得积分10
1秒前
帅气小霜发布了新的文献求助10
3秒前
尛瞐慶成发布了新的文献求助20
4秒前
4秒前
十一发布了新的文献求助10
5秒前
7秒前
jingjing完成签到,获得积分10
8秒前
8秒前
Albert发布了新的文献求助10
10秒前
十一完成签到,获得积分20
12秒前
13秒前
13秒前
尛瞐慶成发布了新的文献求助10
13秒前
瘦瘦的迎南完成签到 ,获得积分10
13秒前
15秒前
15秒前
boluo666完成签到 ,获得积分10
17秒前
王yuu发布了新的文献求助10
17秒前
17秒前
19854173750完成签到,获得积分20
17秒前
真找不到完成签到,获得积分10
18秒前
薛栋潮完成签到 ,获得积分10
19秒前
19854173750发布了新的文献求助10
20秒前
唠叨的墨镜完成签到,获得积分10
20秒前
21秒前
真找不到发布了新的文献求助10
21秒前
21秒前
HaHa007完成签到,获得积分10
21秒前
111发布了新的文献求助10
22秒前
薛栋潮关注了科研通微信公众号
22秒前
猪猪hero应助jackycas采纳,获得10
23秒前
25秒前
meimei完成签到 ,获得积分10
27秒前
lu完成签到,获得积分10
29秒前
Fjj完成签到,获得积分10
30秒前
科研通AI5应助dawang采纳,获得10
31秒前
无奈的萍发布了新的文献求助10
31秒前
昏睡的蟠桃应助jjj采纳,获得200
34秒前
34秒前
脑洞疼应助无奈的萍采纳,获得30
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779897
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222437
捐赠科研通 3040465
什么是DOI,文献DOI怎么找? 1668851
邀请新用户注册赠送积分活动 798805
科研通“疑难数据库(出版商)”最低求助积分说明 758563